Timm Schroeder: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Timm Schroeder
FieldCell Systems Dynamics
Professur f. Zellsystem-Dynamik
ETH Zürich, BSA N 840
Mattenstr. 26
4058 Basel
Telephone+41 61 387 33 92
DepartmentBiosystems Science and Engineering
RelationshipFull Professor

551-1709-00LGenomic and Genetic Methods in Cell and Developmental Biology Restricted registration - show details
Number of participants limited to 8.
The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course (keep reserve masks ready)
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
6 credits7PA. Wutz, M. Kopf, T. Schroeder
AbstractThis course aims to provide students with a comprehensive overview of mammalian developmental biology and stem cell systems both on the theoretical as well as the experimental level. Centering the course on genetic and genomic methods engages the students in contemporary research and prepares for future studies in the course of semester and master projects.
Objective- Understanding mammalian development
- Introduction to stem cells systems
- Working with cultured cells
- Translational aspects of mammalian cell biology
ContentThe course will consist of a series of lectures, assay assignments, project development and discussion workshops, and 2 and a half week of lab work with different mammalian cell systems embedded in real life research projects. At the end of the course students will take an exam consisting of questions on the topic of the lectures and workshops. It is expected that students will be able to apply the knowledge to concrete problems.
636-0109-00LStem Cells: Biology and Therapeutic Manipulation
Attention: This course was offered in previous semesters with the number: 636-0013-00L "Stem Cells: Biology and Therapeutic Manipulation". Students that already passed course 636-0013-00L cannot receive credits for course 636-0109-00L.
4 credits3GT. Schroeder
AbstractStem cells are central in tissue regeneration and repair, and hold great potential for therapy. We will discuss the role of stem cells in health and disease, and possibilities to manipulate their behavior for therapeutic application. Basic molecular and cell biology, engineering and novel technologies relevant for stem cell research and therapy will be discussed.
ObjectiveUnderstanding of current knowledge, and lack thereof, in stem cell biology, regenerative medicine and required technologies. Theoretical preparation for practical laboratory experimentation with stem cells.
ContentWe will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application.

Topics will include:
- Embryonic and adult stem cells and their niches
- Induced stem cells by directed reprogramming
- Relevant basic cell biology and developmental biology
- Relevant molecular biology
- Cell culture systems
- Cell fates and their molecular control by transcription factors and signalling pathways
- Cell reprogramming
- Disease modelling
- Tissue engineering
- Bioimaging, Bioinformatics
- Single cell technologies
636-0301-00LCurrent Topics in Biosystems Science and Engineering
For doctoral students only.
Master's students cannot receive credits for the seminar.
2 credits1SR. Platt, N. Beerenwinkel, Y. Benenson, K. M. Borgwardt, P. S. Dittrich, M. Fussenegger, A. Hierlemann, D. Iber, M. H. Khammash, A. Moor, D. J. Müller, S. Panke, S. Reddy, T. Schroeder, T. Stadler, J. Stelling, B. Treutlein
AbstractThis seminar will feature invited lectures about recent advances and developments in systems biology, including topics from biology, bioengineering, and computational biology.
ObjectiveTo provide an overview of current systems biology research.
ContentThe final list of topics will be available at https://www.bsse.ethz.ch/news-and-events/seminar-series.html