Henner Busemann: Catalogue data in Autumn Semester 2018

Name Prof. Dr. Henner Busemann
Address
Inst. für Geochemie und Petrologie
ETH Zürich, NW C 84
Clausiusstrasse 25
8092 Zürich
SWITZERLAND
Telephone+41 44 633 82 28
Fax+41 44 632 11 79
E-mailhenner.busemann@eaps.ethz.ch
DepartmentEarth and Planetary Sciences
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
651-4227-00LPlanetary Geochemistry3 credits2GM. Schönbächler, H. Busemann, A. Hunt
AbstractFormation and evolution of the solar system from a geochemical perspective
Learning objectiveTo understand the formation and evolution of the solar system and its planets from a geochemical perspective
ContentThe Sun and solid objects in the solar system (planets, comets, asteroids, meteorites, interplanetary dust) are discussed from a geochemical perspective. What does their present-day composition tell us about the origin, formation and evolution of the solar system? The lectures introduce the basics of the terrestrial and giant planets, comets and asteroids, gained from modern space missions and the study of extraterrestrial materials. The chemical and isotopic composition of meteorites, being the most primitive material available for study, is a further major topic.
Lecture notesavailable electronically
651-4229-00LAdvanced Geochronology3 credits2GM. Guillong, H. Busemann, M. G. Fellin, A. Liati, A. Quadt Wykradt-Hüchtenbruck, J.‑F. Wotzlaw
AbstractThis lecture gives an overview on geochronology. Several in their field specialized lecturers cover the principles and methods and will give insight into recent applications and research projects.
Learning objectiveThe purpose of this lecture is to provide a comprehensive overview of: a) the different radiometric methods in Geology, the different dating tasks and the constraints put by the complexity of natural systems, including dating by cosmogenic nuclides,
b) the various analytical tools available today for radiometric dating, their advantages and disadvantages,
c) the use of noble gases in Geochemistry and
d) detailed description of case studies, as examples of approach of a number of geological problems and interpretation of the data.

At the end students know the different isotope systems, methods and their application. Understand literature and critical reading and interpretation of published data is possible. For simple geochronological questions they can describe a scientific approach and possible solution.
Content1. Introduction, History of Geochronology, Overview of isotopic systems, dating methods.
2. U-Th-Pb system, focus on ion microprobe; zircon in radiometric dating
3. Zircon dating of HP/HT metamorphic rocks; data interpretation; case studies
4. Fission-track dating
5. (U-Th)/He dating
6. Laser ablation ICP-MS instrumentation and methods for dating.
7. Application of LA-ICP MS to Geochronology examples from recent research projects.
8. K-Ar and 40Ar/39Ar geochronology , Principles and applications
9. High-precision ID-TIMS U-Pb geochronology, Principles and applications
10. Examples from recent research projects
11. Examples from recent research projectsSm,
12. Noble gases - basics, reservoirs, geo/cosmochem. applications: mainly chronology
13. Cosmogenic nuclides (stable and radionuclides) - basics, geo/cosmochem. applications, C14
exams
Lecture notesScript (for part of the lecture), partly power point presentations (in the web)
Literaturehttp://elementsmagazine.org/get_pdf.php?fn=e9_1.pdf&dr=e9_1

Geochronology and Thermochronology
Author(s):Peter W. ReinersRichard W. CarlsonPaul R. RenneKari M. CooperDarryl E. GrangerNoah M. McLeanBlair Schoene
First published:8 January 2018
Online ISBN:9781118455876 |DOI:10.1002/9781118455876

- Faure, G. and Mensing, T. (2005): Isotopes. Principles and applications. 3rd ed. John Wiley and Sons.
- Dickin, A. (2005): Radiogenic Isotope Geology. 2nd ed. Cambridge University press.