Name | Herr Prof. Dr. Wendelin Werner |
Lehrgebiet | Mathematik |
Adresse | Professur für Mathematik ETH Zürich, HG G 66.1 Rämistrasse 101 8092 Zürich SWITZERLAND |
wendelin.werner@math.ethz.ch | |
URL | http://www.math.ethz.ch/~wewerner |
Departement | Mathematik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-4600-67L | Student Seminar in Probability ![]() Limited number of participants. Registration to the seminar will only be effective once confirmed by email from the organizers. | 4 KP | 2S | A.‑S. Sznitman, J. Bertoin, V. Tassion, W. Werner | |
Kurzbeschreibung | |||||
Lernziel | |||||
Inhalt | The seminar is centered around a topic in probability theory which changes each semester. | ||||
Voraussetzungen / Besonderes | The student seminar in probability is held at times at the undergraduate level (typically during the spring term) and at times at the graduate level (typically during the autumn term). The themes vary each semester. The number of participants to the seminar is limited. Registration to the seminar will only be effective once confirmed by email from the organizers. | ||||
401-4607-67L | Schramm-Loewner Evolutions | 4 KP | 2V | W. Werner | |
Kurzbeschreibung | This course will be an introduction to Schramm-Loewner Evolutions which are natural random planar curve that arise in a number of contexts in probability theory and statistical theory in two dimensions. | ||||
Lernziel | The goal of the course is to provide an overview of the definition and the main properties of Schramm-Loewner Evolutions (SLE). | ||||
Inhalt | Most of the following items will be covered in the lectures: - Introduction to SLE - Definition of SLE - Phases of SLE, hitting probabilities - How does one prove that an SLE is actually a curve? - Restriction, locality - Relation to loop-soups and the Gaussian Free Field - Some SLEs as scaling limit of lattice models | ||||
401-5600-00L | Seminar on Stochastic Processes ![]() | 0 KP | 1K | J. Bertoin, A. Nikeghbali, B. D. Schlein, A.‑S. Sznitman, V. Tassion, W. Werner | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
406-2554-AAL | Topology Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 6 KP | 13R | W. Werner | |
Kurzbeschreibung | Topological spaces, continuous maps, connectedness, compactness, separation axioms, metric spaces, quotient spaces, homotopy, fundamental group and covering spaces, van Kampen Theorem, surfaces and manifolds. | ||||
Lernziel | |||||
Literatur | Klaus Jänich: Topologie (Springer-Verlag) http://www.springerlink.com/content/978-3-540-21393-2/fulltext/#section=592889&page=1 James Munkres: Topology (Prentice Hall) William Massey: Algebraic Topology: an Introduction (Springer-Verlag) Alan Hatcher: Algebraic Topology (Cambridge University Press) http://www.math.cornell.edu/~hatcher/AT/ATpage.html | ||||
Voraussetzungen / Besonderes | The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material. |