Will Merry: Katalogdaten im Herbstsemester 2020 |
Name | Herr Dr. Will Merry |
Lehrgebiet | Mathematik |
Departement | Mathematik |
Beziehung | Assistenzprofessor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-0000-00L | Communication in Mathematics | 2 KP | 1V | W. Merry | |
Kurzbeschreibung | Don't hide your Next Great Theorem behind bad writing. This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX. | ||||
Lernziel | Knowing how to present written mathematics in a structured and clear manner. | ||||
Inhalt | Topics covered include: - Language conventions and common errors. - How to write a thesis (more generally, a mathematics paper). - How to use LaTeX. - How to write a personal statement for Masters and PhD applications. | ||||
Skript | Full lecture notes will be made available on my website: https://www.merry.io/teaching/ | ||||
Voraussetzungen / Besonderes | There are no formal mathematical prerequisites. | ||||
401-3531-00L | Differential Geometry I Höchstens eines der drei Bachelor-Kernfächer 401-3461-00L Funktionalanalysis I / Functional Analysis I 401-3531-00L Differentialgeometrie I / Differential Geometry I 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat) wenden. | 10 KP | 4V + 1U | W. Merry | |
Kurzbeschreibung | This will be an introductory course in differential geometry. Topics covered include: - Smooth manifolds, submanifolds, vector fields, - Lie groups, homogeneous spaces, - Vector bundles, tensor fields, differential forms, - Integration on manifolds and the de Rham theorem, - Principal bundles. | ||||
Lernziel | |||||
Literatur | There are many excellent textbooks on differential geometry. A friendly and readable book that covers everything in Differential Geometry I is: John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag. A more advanced (and far less friendly) series of books that covers everything in both Differential Geometry I and II is: S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volumes I and II (1963, 1969) Wiley. |