Will Merry: Katalogdaten im Herbstsemester 2020

NameHerr Dr. Will Merry
LehrgebietMathematik
DepartementMathematik
BeziehungAssistenzprofessor

NummerTitelECTSUmfangDozierende
401-0000-00LCommunication in Mathematics2 KP1VW. Merry
KurzbeschreibungDon't hide your Next Great Theorem behind bad writing.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.
LernzielKnowing how to present written mathematics in a structured and clear manner.
InhaltTopics covered include:

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.
SkriptFull lecture notes will be made available on my website:

https://www.merry.io/teaching/
Voraussetzungen / BesonderesThere are no formal mathematical prerequisites.
401-3531-00LDifferential Geometry I
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat) wenden.
10 KP4V + 1UW. Merry
KurzbeschreibungThis will be an introductory course in differential geometry.

Topics covered include:

- Smooth manifolds, submanifolds, vector fields,
- Lie groups, homogeneous spaces,
- Vector bundles, tensor fields, differential forms,
- Integration on manifolds and the de Rham theorem,
- Principal bundles.
Lernziel
LiteraturThere are many excellent textbooks on differential geometry. A friendly and readable book that covers everything in Differential Geometry I is:

John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag.

A more advanced (and far less friendly) series of books that covers everything in both Differential Geometry I and II is:

S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volumes I and II (1963, 1969) Wiley.