Ueli Angst: Catalogue data in Autumn Semester 2024 |
Name | Prof. Dr. Ueli Angst |
Field | Durability of Engineering Materials |
Address | Dauerhaftigkeit von Werkstoffen ETH Zürich, HIF E 93.2 Laura-Hezner-Weg 7 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 40 24 |
ueli.angst@ifb.baug.ethz.ch | |
Department | Civil, Environmental and Geomatic Engineering |
Relationship | Associate Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0135-01L | Steel Structures II | 4 credits | 5G | A. Taras, U. Angst | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Theoretical foundation and constructional features of the design and construction of steel and steel-concrete composite structures. Multi-storey buildings and bridges. Structural analysis for steel-concrete composite structures. Plate buckling of unstiffened and stiffened panels. Fatigue resistance and safe life assessment. Detailling, drafting, fabrication and erection, cost estimation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will expand the knowledge acquired during "Steel Structures I" and learn how to apply these skills to the design of more complex building and bridge steel and composite structures. They will acquire the fundamental background for the phenomena of plate buckling and fatigue and learn how to apply it to practical design tasks. In addition, students will learn to appreciate the importance of questions of detailling, fabrication, erection and cost calculation for the effective design of steel and composite structures. After completion of the year-long course in Steel Structures I+II, students will have at their disposal a wide and detailled set of skills concerning the modern practice for steel and composite structures design and have a deep understanding of its theoretical & scientific background. The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture Steel Structures II complements the knowledge acquired in part I by providing students with additional theoretical and practical knowledge, e.g. on the design of steel and composite structures against fatigue, plate buckling, as well as on the structural modelling and analysis of more complex building and bridge structures. These more theoretical topics will be exemplified and illustrated by applications to real problems in the design of bridges and multi-storey building structures. Finally, the course will provide detailled insight into aspects pertaining to structural detailling, fabrication, erection and cost estimation for constructional steelwork. Content overview: - Structural forms, analysis techniques and modelling of multi-storey buildings and bridges. - Structural analysis (deformations, internal forces, stresses and strains) in steel-concrete composite girders considering the effects of creep, shrinkage and shear deformations. - Elastic and plastic longitudinal shear transfer mechanisms and effects - Plate buckling of unstiffened and stiffened panels - Fatigue resistance and safe life assessment: phenomenon and design approaches - Special topics of steel connection design - Detailling, drafting, fabrication and erection, cost determination in constructional steelwork | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and slides. Worked Examples with summary of theory. Design aids and formula collections. Videos of lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - J.-P. Lebet, M. Hirt: Steel Bridges, Conceptual and Structural Design of Steel and Steel-Concrete Composite Bridges, EPFL Press - Stahlbaukalender (various editions), Ernst & Sohn, Berlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The content of steel structures I is a prerequisite | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0659-01L | Durability and Maintenance of Reinforced Concrete | 4 credits | 2V | U. Angst, Z. Zhang | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | We look at the durability of reinforced concrete structures, covering common deterioration processes such as reinforcement corrosion, frost damage, ASR, etc. The course spans the range from fundamental mechanisms to aspects of engineering practice. New methods and materials for preventative measures, condition assessment and repair techniques are treated. Examples from real cases are shown. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After this course you will have profound understanding about: • the different mechanisms of deterioration of concrete structures, in particular reinforcement corrosion • the relevant parameters affecting durability of reinforced concrete (cover depth, concrete quality, moisture, etc.) Furthermore, you will know: • current engineering approaches for durability design (according to standards) and their limitations • refined models for enhanced durability design and service life predictions • preventive measures to improve durability (e.g. stainless steel reinforcement, concrete surface coatings, etc.) • the particular durability challenges with post-tensioned structures and ways to overcome them (electrically isolated tendons) • methods for inspection and condition assessment of existing, ageing structures (including non-destructive techniques and monitoring with sensors) • repair methods for deteriorated concrete structures such as conventional repair and electrochemical methods (in particular cathodic protection) • possible future problems for durability that may arise with modern materials and construction technologies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | • Socio-economic challenges related to ageing infrastructures • Fundamentals of corrosion and durability: Corrosion in concrete (chlorides, carbonation). Passivity and pitting corrosion. Cracking and influence of cracks. • Degradation mechanisms for concrete: sulphate attack, ASR, frost attack. • Inspection and condition assessment: Chloride analyses, carbonation depth, etc. Non-destructive tests, particularly potential mapping to detect corrosion. New developments (for example, monitoring with sensors). • Pre-stressed and post-tensioned structures: problem with existing structures. New systems with polymer ducts / electrically isolated tendons. Monitoring techniques. Applications. • Stainless steel as reinforcing steel for concrete: Different types of stainless steels. Coupling with black reinforcing steel. Examples of application. Life-cycle-costs. • Repair methods: Conventional. Coatings. Corrosion inhibitors. Electrochemical methods, in particular cathodic protection. • Durability design: Prescriptive approach (standards). Service life modeling. Limitations and opportunities. • Modern materials and construction technologies: Discussion of expected implications for the durability of structures today and in the future. Excursion: • We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder Slides of the lectures will be distributed in advance Special handouts and reprints for particular topics will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder Slides of the lectures will be distributed in advance Special handouts and reprints for particular topics will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Form of teaching: The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home. Report: Each student will work on a small case study and deliver a report during the semester. The report will be graded. Excursion: We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-6615-00L | Materials in Civil Engineering I | 5 credits | 8G | R. J. Flatt, U. Angst, I. Burgert, D. Kammer, F. Wittel | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Vermittlung von grundlegenden theoretischen und praktischen Kenntnissen über klassische Baustoffe (Zement, Beton, Metalle, Glas, Holz, Kunststoffe und Bitumen) und ihre Eigenschaften und werkstoffgerechten Einsatz. Werkstoffübergreifende Betrachtungen von Materialverhalten, -auswahl und Optimierung im Entwurfsprozess (inkl. Nachhaltigkeit und Eignung für digitale Fabrikationsprozesse). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Studierende werden mit dem Spektrum der im Bauwesen eingesetzten Werkstoffen und ihrem charakteristischen Verhalten vertraut gemacht. Neben entwurfseinschränkenden mechanischen Eigenschaften werden bestimmende Faktoren für die Dauerhaftigkeit ausführlich behandelt und Möglichkeiten und Entwicklungen der digitalen Fabrikation beleuchtet. Im Detail werden grundlegende werkstoffspezifische Themen wie Struktur und Eigenschaften mineralischer Bindemittel, Zement, Beton, Bitumen und Asphalt, Holz, Metalle, Glas und Kunststoffe thematisiert. Einen werkstoffübergreifenden Rahmen vermitteln Vorlesungen über Materialauswahl im Entwurfsprozess, Materialprüfung und Parameteridentifikation mit realen Daten, die Bewertung der Nachhaltigkeit, Methoden der digitalen Fabrikation sowie der numerischen Voraussage und Optimierung des Materialverhaltens. Die Studierenden erlernen in den Vorlesungen und in auf diese abgestimmten Laborübungen theoretische und praktische Kompetenzen für den werkstoffgerechten Einsatz und bewussten Umgang mit Baustoffen als wertvolle Ressourcen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Der Jahreskurs gliedert sich in 8 Module, die auf 2 Semester verteilt sind. Module umfassen Vorlesungen und dazugehörige Labore: HS: Modul 1: Physikalisches Verhalten von Materialien und ihre Charakterisierung: V (7): Grundlegendes mechanisches, thermisches Verhalten von Baustoffen sowie Grenzschichten und Mikrostrukturen poröser Materialen. Einführungsvorlesungen zum Arbeiten mit realen Daten, zur Nachhaltigkeit und zur Strukturberechnung mit Finite Elemente Methoden. L (3-4): Labore zu Bauphysik, zu Finite Elemente Methoden , bewertete Hausübung zu LCA und zur Analyse wissenschaftlicher Daten. Modul 2: Zementöse Baustoffe: V (6): Zementherstellung und Hydration, mechanisches und rheologisches Verhalten von Beton, Mauerwerk und Steinen. Dauerhaftigkeit von Beton, insbesondere bei Sulfatangriff, ASR, Frieren, Schrumpfen und Karbonatisierung. L (5): Labore zu Betontechnologie, Mineralische Bindemittel, Stein als Baumaterial, Mauerwerk und Mikrostruktur unterschiedlicher Baustoffe. Modul 3: Amorphe Werkstoffe: V (5): Grundlagen und Verarbeitung von Kunststoffen in Bauanwendungen. Grundlagen, Eigenschaften, Herstellung und Einsatz architektonischer Gläsern. Bituminöse Werkstoffe. Modul 4: Digitale Fabrikation: V (2): Methoden der digitalen Fabrikation und additiven Fertigung. E (1): Exkursion Emersive Design Lab / HIB FS: Modul 5: Metalle und Korrosion: V (6): Physikalische Eigenschaften von Metallen, NE- und Eisenlegierungen und ihre Verarbeitung und Anwendung im Bauwesen. Grundlagen der Korrosion, lokalen Korrosion, atmosphärische und im Beton. L (3): Labore zu metallischen Werkstoffen, Dauerhaftigkeit von Stahlbetonbauten, detektieren und orten der Korrosion und digitaler Fabrikation. Modul 6: Holz und Holzwerkstoffe: V (4): Struktur, Chemismus und mechanische Eigenschaften von Holz. Holzschutz und Holzwerkstoffe am Bau. L (2): Labore zu Holzeigenschaften auf Makro- und Mikroskopischer Ebene. Modul 7: Baustoffe im Computer: V (3): Grundlagen der Materialsimulation, Mikromechanik und Fallstudien zu Materialsimulationen für Baustoffe Modul 8: Repetitorien: U/V (4): Besprechung der Repetitionsübungen der 4 Prüfungskernthemen: Physikalisches Verhalten, Zement und Beton, Metalle und Korrosion, Holz- und Holzwerkstoffe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
|