Ueli Angst: Catalogue data in Spring Semester 2021

Name Prof. Dr. Ueli Angst
FieldDurability of Engineering Materials
Address
Dauerhaftigkeit von Werkstoffen
ETH Zürich, HIF E 93.2
Laura-Hezner-Weg 7
8093 Zürich
SWITZERLAND
Telephone+41 44 633 40 24
E-mailueli.angst@ifb.baug.ethz.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipAssistant Professor

NumberTitleECTSHoursLecturers
101-0604-02LIntroduction to Materials5 credits4GR. J. Flatt, U. Angst, I. Burgert, F. Wittel
AbstractIn this introductory lecture, students gain basic knowledge on building materials like cement, concrete, metals, glass, wood, polymers, and bitumen, their manufacturing and processing, important properties and their application. Fundamental mechanical, thermal and optical properties are discussed and experimental ways for measuring, as well as numerical methods for predicting them, are depicted.
ObjectiveStudents become acquainted with the spectrum of building materials and their characteristic properties. They will learn about the most important mechanical properties, as well as factors affecting durability. In particular, structures and properties of mineral binders, cement, concrete, bitumen and asphalt, wood, metals, glass, and polymers are presented. Students learn about the fundamental behavior of materials, experimental measurement of characteristic properties, as well as means for their numerical prediction and optimization.
Content-Fundamental behavior of building materials: mechanical, thermal and optical properties; strength and fracture; material testing and parameter identification; porosity and moisture transport;
-Mineral binders: production and hydration
-Concrete: Mechanics and rheology, durability, freezing, shrinkage, and carbonation.
-Metals: Introduction and physical properties, alloying and iron-carbon alloys, processing and applications in civil engineering.
-Corrosion: Atmospheric corrosion and durability of steel-reinforced concrete.
-Wood: Structure and chemism, mechanical properties, wood protection, and wood materials.
-Glass: Introduction on glass and physical properties, processing and applications in civil engineering.
-Polymers: Foundations, properties, and processing, applications in civil engineering.
-Asphalt and bitumen.
-Material modeling: Basics of material modeling, micro-mechanics and case studies for building materials.
Lecture notesAll lecture materials are distributed on the moodle page of the course.
LiteratureAshby/Jones: Engineering Materials I and II
Ashby: Materials Selection in Mechanical Design
101-0679-00LNon-Destructive Test Methods and Health Monitoring Restricted registration - show details
Number of participants limited to 8.
3 credits2PI. Burgert, U. Angst
AbstractMethods for the non-destructive characterization and testing of wood and reinforced concrete are presented in introductory lectures. Afterwards selected experiments such as measurement of humidity, ultrasound, hardness and porosity are performed by the students. Some parameters that influence materials properties are tested. A written report with results and discussion has to be prepared at the en
ObjectiveImportant non-destructive test methods shall be learnt. These methods that are based on the same physical principles (e.g. resistance measurement, ultrasound, hardness) are used for wood and concrete in a comparative way. The course shall the address the fundamentals for condition assessment of structures in wood and reinforced concrete.
ContentDetailed knowledge of the microscopic structure of concrete and wood.
Knowledge of non-destructive test methods for concrete and wood (humidity, ultrasound, hardness, etc.).
Problems in calibration of measuring instruments, influence of disturbing parameters (e.g. temperature).
Basics of condition assessment of wood and reinforced concrete structures, assessment of deterioration processes (corrosion).
Writing of reports for condition assessment.
Possibilities of restoration of structures.
Lecture notesA manuscript of the course will be available. Additionally reprints or more specific literature will be indicated.
LiteratureWerkstoff Holz:
Niemz, P.; Sander, D.: Prozessmesstechnik in der Holzindustrie. Leipzig 1990
Tagungsbände Fachtagungen zur zerstörungsfreien Werkstoffprüfung
Bucur, V.: Characterization and Imaging of Wood. Springer 2003
Bucur, V.: Acoustics of Wood. Springer 2006
Vollenschar (Hrsg): Wendehorst Baustoffkunde. 26. Auflage. Teubner 2004
Hasenstab, A.: Integritätsprüfung mit zerstörungsfreien Ultraschallechoverfahren.
Diss. TU Berlin 2005
Unger, A.: Schniewind, A.P.; Unger, W.: Conservation of wood artifacts.
Springer 2001

Werkstoff Beton
D. Bürcheler: Der elektrische Widerstand von zementösen Werkstoffen. Diss. ETHZ 11876 (1996)