Vlasios Mavrantzas: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Vlasios Mavrantzas
(Professor University of Patras (Panepistimion Patron))
Address
Professur für Verfahrenstechnik
ETH Zürich, ML F 14.2
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
E-mailvlasios.mavrantzas@mat.ethz.ch
DepartmentMechanical and Process Engineering
RelationshipLecturer

NumberTitleECTSHoursLecturers
151-0902-00LMicro- and Nanoparticle Technology Restricted registration - show details
Number of participants is limited to 20.
Additional ones could be enrolled by permission of the lecturer.
6 credits2V + 2US. E. Pratsinis, G. Kelesidis, V. Mavrantzas, K. Wegner
AbstractParticles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization.
ObjectiveThis course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there!
ContentThe course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two semester weeks addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following:
- Overview & Project Presentation
- Particle Size Distribution
- Particle Diffusion
- Coagulation
- Agglomeration & Coalescence
- Particle Growth by Condensation
- Control of particle size & structure during gas-phase synthesis
- Multi-scale design of aerosol synthesis of particles
- Particle Characterization
- Aerosol manufacture of nanoparticles
- Forces acting on Single Particles in a Flow Field
- Fixed and Fluidized Beds
- Separations of Solid-Liquid & Solid-Gas systems
- Emulsions/droplet formation/microfluidics
- Gas Sensors
- Coaching for proposal & report writing as well as oral presentations
LiteratureSmoke, Dust and Haze, S.K. Friedlander, Oxford, 2nd ed., 2000
Aerosol Technology, W. Hinds, Wiley, 2nd Edition, 1999.
Aerosol Processing of Materials, T. Kodas M. Hampden-Smith, Wiley, 1999.
History of the Manufacture of Fine Particles in High-Temperature Aerosol Reactors in Aerosol Science and Technology: History and Reviews, ed. D.S. Ensor & K.N. Lohr, RTI Press, Ch. 18, pp. 475-507, 2011.
Flame aerosol synthesis of smart nanostructured materials, R. Strobel, S. E. Pratsinis, J. Mater. Chem., 17, 4743-4756 (2007).
Prerequisites / NoticeFluidMechanik I, Thermodynamik I&II & "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII).
151-0917-00LMass Transfer4 credits2V + 2US. E. Pratsinis, A. Güntner, V. Mavrantzas
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ObjectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeStudents attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.