Bruno Sudret: Catalogue data in Spring Semester 2016 |
Name | Prof. Dr. Bruno Sudret |
Name variants | Bruno Sudret B. Sudret |
Field | Risk, Safety and Uncertainty Quantification in Civil Engineering |
Address | Risiko, Sich., Ungew. im Bauing.w. ETH Zürich, HIL E 22.3 Stefano-Franscini-Platz 5 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 04 44 |
sudret@ethz.ch | |
URL | http://www.rsuq.ethz.ch |
Department | Civil, Environmental and Geomatic Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
101-0178-01L | Uncertainty Quantification in Engineering | 3 credits | 2G | B. Sudret | |
Abstract | Uncertainty quantification aims at studying the impact of aleatory - (e.g. natural variability) or epistemic uncertainty onto computational models used in science and engineering. The course introduces the basic concepts of uncertainty quantification: probabilistic modelling of data, uncertainty propagation techniques (polynomial chaos expansions), and sensitivity analysis. | ||||
Learning objective | After this course students will be able to properly define an uncertainty quantification problem, select the appropriate computational methods and interpret the results in meaningful statements for field scientists, engineers and decision makers. Although the course is primarily intended to civil, mechanical and electrical engineers, it is suitable to any master student with a basic knowledge in probability theory. | ||||
Content | The course introduces uncertainty quantification through a set of practical case studies that come from civil, mechanical, nuclear and electrical engineering, from which a general framework is introduced. The course in then divided into three blocks: probabilistic modelling (introduction to copula theory), uncertainty propagation (Monte Carlo simulation and polynomial chaos expansions) and sensitivity analysis (correlation measures, Sobol' indices). Each block contains lectures and tutorials using Matlab and the in-house software UQLab. | ||||
Lecture notes | Detailed slides are provided for each lecture. | ||||
Prerequisites / Notice | A basic background in probability theory and statistics (bachelor level) is required. A summary of useful notions will be handed out at the beginning of the course. A good knowledge of Matlab is required to participate in the tutorials and work out assignments. | ||||
101-1187-00L | Colloquium "Structural Engineering" | 0 credits | 2K | B. Stojadinovic, E. Chatzi, M. Fontana, A. Frangi, W. Kaufmann, B. Sudret, T. Vogel | |
Abstract | Professors from national and international universities, technical experts from private industry as well as research associates of the Institute of Structural Engineering (IBK) are invited to present recent research results and specific projects. The colloquium is addressed to students, academics as well as practicing engineers. | ||||
Learning objective | Become acquainted with recent research results in structural engineering. | ||||
364-1058-00L | Risk Center Seminar Series Number of participants limited to 50. | 0 credits | 2S | B. Stojadinovic, K. W. Axhausen, D. Basin, A. Bommier, L.‑E. Cederman, P. Embrechts, H. Gersbach, H. R. Heinimann, D. Helbing, H. J. Herrmann, W. Mimra, G. Sansavini, F. Schweitzer, D. Sornette, B. Sudret, U. A. Weidmann | |
Abstract | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling and governing complex socio-economic systems, and managing risks and crises. Students and other guests are welcome. | ||||
Learning objective | Participants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models and approaches for open problems, to analyze them with computers or other means, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level. | ||||
Content | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the seminar. Students and other guests are welcome. | ||||
Lecture notes | There is no script, but the sessions will be recorded and be made available. Transparencies of the presentations may be put on the course webpage. | ||||
Literature | Literature will be provided by the speakers in their respective presentations. | ||||
Prerequisites / Notice | Participants should have relatively good scientific, in particular mathematical skills and some experience of how scientific work is performed. |