Lorenz Halbeisen: Katalogdaten im Herbstsemester 2021

NameHerr Prof. Dr. Lorenz Halbeisen
Adresse
Dep. Mathematik
ETH Zürich, HG G 51.5
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 633 84 60
E-Maillorenz.halbeisen@math.ethz.ch
URLhttp://www.math.ethz.ch/~halorenz
DepartementMathematik
BeziehungTitularprofessor

NummerTitelECTSUmfangDozierende
401-2003-00LAlgebra I Information
Der Jahreskurs Algebra I / Algebra II wird im HS 2021 / FS 2022 letztmals in der aktuellen Form angeboten.
7 KP4V + 2UL. Halbeisen
KurzbeschreibungEinführung in die grundlegenden Begriffe und Resultate der Gruppentheorie, der Ringtheorie und der Körpertheorie.
LernzielEinführung in grundlegende Begriffe und Resultate aus der Theorie der Gruppen, der Ringe und der Körper.
InhaltGruppentheorie: Grundbegriffe und Beispiele von Gruppen, Untergruppen, Quotientengruppen, Homomorphismen, Gruppenoperationen, Sylowsätze, Anwendungen

Ringtheorie: Grundbegriffe und Beispiele von Ringen,
Ringhomomorphismen, Ideale, Faktorringe, euklidische Ringe, Hauptidealringe, faktorielle Ringe, Anwendungen

Körpertheorie: Grundbegriffe und Beispiele von Körpern, Körpererweiterungen, algebraische Erweiterungen, Anwendungen
LiteraturG. Fischer: Lehrbuch der Algebra, Vieweg Verlag
Karpfinger-Meyberg: Algebra, Spektrum Verlag
S. Bosch: Algebra, Springer Verlag
B.L. van der Waerden: Algebra I und II, Springer Verlag
S. Lang, Algebra, Springer Verlag
A. Knapp: Basic Algebra, Springer Verlag
J. Rotman, "Advanced modern algebra, 3rd edition, part 1"
http://bookstore.ams.org/gsm-165/
J.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)
R. Lidl and H. Niederreiter: Introduction to Finite Fields and their Applications (Cambridge University Press)
401-3033-00LDie Gödel'schen Sätze8 KP3V + 1UL. Halbeisen
KurzbeschreibungDie Vorlesung besteht aus drei Teilen:
Teil I gibt eine Einführung in die Syntax und Semantik der Prädikatenlogik erster Stufe.
Teil II behandelt den Gödel'schen Vollständigkeitssatz
Teil III behandelt die Gödel'schen Unvollständigkeitssätze
LernzielDas Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.
InhaltSyntax und Semantik der Prädikatenlogik
Gödel'scher Vollständigkeitssatz
Gödel'sche Unvollständigkeitssätze
LiteraturL. Halbeisen und R. Krapf: Gödel's Theorems and Zermelo's Axioms: a firm foundation of mathematics, Birkhäuser-Verlag, Basel (2020)
401-9983-00LMentorierte Arbeit Fachdidaktik Mathematik A Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachdidaktik Mathematik für DZ und Lehrdiplom.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in Fachdidaktik setzen die Studierenden Inhalte der Fachdidaktikvorlesungen praktisch um und vertiefen sie. Unter Anleitung erstellen sie lernwirksame Unterrichtsmaterialien und/oder analysieren und reflektieren bestimmte Themen unter fachdidaktischen und pädagogischen Gesichtspunkten.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein Unterrichtsthema einarbeiten können, indem sie verschiedene Quellen sichten, Materialien beschaffen und über die Relevanz des Themas und des von ihnen gewählten Zugangs in fachlicher, fachdidaktischer, pädagogischer und eventuell gesellschaftlicher Hinsicht reflektieren.
- zeigen, dass sie selbstständig eine lernwirksame Unterrichtssequenz erstellen und zur Einsatzreife bringen können.
InhaltThematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9984-00LMentorierte Arbeit Fachdidaktik Mathematik B Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachdidaktik Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in Fachdidaktik setzen die Studierenden Inhalte der Fachdidaktikvorlesungen praktisch um und vertiefen sie. Unter Anleitung erstellen sie lernwirksame Unterrichtsmaterialien und/oder analysieren und reflektieren bestimmte Themen unter fachdidaktischen und pädagogischen Gesichtspunkten.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein Unterrichtsthema einarbeiten können, indem sie verschiedene Quellen sichten, Materialien beschaffen und über die Relevanz des Themas und des von ihnen gewählten Zugangs in fachlicher, fachdidaktischer, pädagogischer und eventuell gesellschaftlicher Hinsicht reflektieren.
- zeigen, dass sie selbstständig eine lernwirksame Unterrichtssequenz erstellen und zur Einsatzreife bringen können.
InhaltThematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9985-00LMentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik A Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für DZ und Lehrdiplom.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken.
Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können.
- selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können.
- Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren.
InhaltThematische Schwerpunkte:
Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um.

Lernformen:
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte
Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9986-00LMentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik B Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
Lernziel
406-0252-AALMathematics II Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
7 KP15RL. Halbeisen
KurzbeschreibungContinuation of the topics of Mathematics I. Main focus: multivariable calculus and partial differential equations.
LernzielMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Inhalt- Multivariable Differential Calculus:
functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

- Multivariable Integral Calculus:
multiple integrals, line and surface integrals, work and flux, Green, Gauss and Stokes theorems, applications.

- Partial Differential Equations:
separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.
Literatur- Thomas, G. B.: Thomas' Calculus, Parts 2 (Pearson Addison-Wesley).
- Kreyszig, E.: Advanced Engineering Mathematics (John Wiley & Sons).
406-0253-AALMathematics I & II Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
13 KP28RL. Halbeisen
KurzbeschreibungMathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
Main focus of Mathematics II: multivariable calculus and partial differential equations.
LernzielMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Inhalt1. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.

4. Multivariable Differential Calculus:
functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence.

5. Multivariable Integral Calculus:
multiple integrals, line and surface integrals, work and flow, Green, Gauss and Stokes theorems, applications.

6. Partial Differential Equations:
separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform.
Literatur- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
- Thomas, G. B.: Thomas' Calculus, Part 1 - Early Transcendentals (Pearson Addison-Wesley).
- Thomas, G. B.: Thomas' Calculus, Parts 2 (Pearson Addison-Wesley).
- Kreyszig, E.: Advanced Engineering Mathematics (John Wiley & Sons).
Voraussetzungen / BesonderesPrerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Assistance:
Tuesdays and Wednesdays 17-19h, in Room HG E 41.