Lorenz Halbeisen: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Lorenz Halbeisen
Address
Dep. Mathematik
ETH Zürich, HG G 51.5
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 633 84 60
E-maillorenz.halbeisen@math.ethz.ch
URLhttp://www.math.ethz.ch/~halorenz
DepartmentMathematics
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
401-0251-00LMathematics I Restricted registration - show details 6 credits4V + 2UL. Halbeisen
AbstractThis course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
Learning objectiveMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Content1. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

2. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.
Literature- Thomas, G. B.: Thomas' Calculus, Part 1 (Pearson Addison-Wesley).
- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
Prerequisites / NoticePrerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Mathe-Lab (Assistance):
Mondays 18-20, Tuesdays 18-20, Wednesdays 18-20, in Room HG E 41.
401-9983-00LMentored Work Subject Didactics Mathematics A Restricted registration - show details
Mentored Work Subject Didactics in Mathematics for TC and Teaching Diploma.
2 credits4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede
AbstractIn their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.
Learning objectiveThe objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.
ContentThematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden.
Lecture notesEine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.
LiteratureDie Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.
Prerequisites / NoticeDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9984-00LMentored Work Subject Didactics Mathematics B Restricted registration - show details
Mentored Work Subject Didactics in Mathematics for Teaching Diploma and for students upgrading TC to Teaching Diploma.
2 credits4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede
AbstractIn their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle.
Learning objectiveThe objective is for the students:
- to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too.
- to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use.
ContentThematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden.
Lecture notesEine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.
LiteratureDie Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.
Prerequisites / NoticeDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9985-00LMentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics A Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for TC and Teaching Diploma.
2 credits4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede
AbstractIn the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
Learning objectiveThe aim is for the students
- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.
ContentThematische Schwerpunkte:
Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um.

Lernformen:
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte
Arbeit ist Teil des Portfolios der Studierenden.
Lecture notesEine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.
LiteratureDie Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.
Prerequisites / NoticeDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9986-00LMentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics B Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for Teaching Diploma and for students upgrading TC to Teaching Diploma.
2 credits4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede
AbstractIn the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
Learning objective
406-0251-AALMathematics I Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits13RL. Halbeisen
AbstractThis course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
Learning objectiveMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Content1. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.
Literature- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
- Thomas, G. B.: Thomas' Calculus, Part 1 - Early Transcendentals (Pearson Addison-Wesley).
Prerequisites / NoticePrerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Assistance:
Tuesdays and Wednesdays 17-19h, in Room HG E 41.