Lorenz Halbeisen: Katalogdaten im Herbstsemester 2020

NameHerr Prof. Dr. Lorenz Halbeisen
Adresse
Dep. Mathematik
ETH Zürich, HG G 51.5
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 633 84 60
E-Maillorenz.halbeisen@math.ethz.ch
URLhttp://www.math.ethz.ch/~halorenz
DepartementMathematik
BeziehungTitularprofessor

NummerTitelECTSUmfangDozierende
401-0251-00LMathematik I: Analysis I und Lineare Algebra Belegung eingeschränkt - Details anzeigen 6 KP4V + 2UL. Halbeisen
KurzbeschreibungDiese Vorlesung behandelt mathematische Konzepte und Methoden, die zum Modellieren, Lösen und Diskutieren wissenschaftlicher Probleme nötig sind - speziell durch gewöhnliche Differentialgleichungen.
LernzielMathematik ist von immer grösserer Bedeutung in den Natur- und Ingenieurwissenschaften. Grund dafür ist das folgende Konzept zur Lösung konkreter Probleme: Der entsprechende Ausschnitt der Wirklichkeit wird in der Sprache der Mathematik modelliert; im mathematischen Modell wird das Problem - oft unter Anwendung von äusserst effizienter Software - gelöst und das Resultat in die Realität zurück übersetzt.

Ziel der Vorlesungen Mathematik I und II ist es, die einschlägigen mathematischen Grundlagen bereit zu stellen. Differentialgleichungen sind das weitaus wichtigste Hilfsmittel im Prozess des Modellierens und stehen deshalb im Zentrum beider Vorlesungen.
Inhalt1. Differential- und Integralrechnung:
Wiederholung der Ableitung, Linearisierung, Taylor-Polynome, Extremwerte, Stammfunktion, Hauptsatz der Differential- und Integralrechnung, Integrationsmethoden, uneigentliche Integrale.

2. Lineare Algebra und Komplexe Zahlen:
lineare Gleichungssysteme, Gauss-Verfahren, Matrizen, Determinanten, Eigenwerte und Eigenvektoren, Darstellungsformen der komplexe Zahlen, Potenzieren, Radizieren, Fundamentalsatz der Algebra.

3. Gewöhnliche Differentialgleichungen:
Separierbare Differentialgleichungen (DGL), Integration durch Substitution, Lineare DGL erster und zweiter Ordnung, homogene Systeme linearer DGL mit konstanten Koeffizienten, Einführung in die dynamischen Systeme in der Ebene.
Literatur- Thomas, G. B., Weir, M. D. und Hass, J.: Analysis 1, Lehr- und Übungsbuch (Pearson).
- Gramlich, G.: Lineare Algebra, eine Einführung (Hanser).
- Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, Bd. 1 und 2 (Vieweg+Teubner).
Voraussetzungen / BesonderesVoraussetzungen: Vertrautheit mit den Grundlagen der Analysis, insbesondere mit dem Funktions- und Ableitungsbegriff.

Mathe-Lab (Präsenzstunden):
Mo 18-20, Di 18-20, Mi 18-20, stets im Raum HG E 41.
401-9983-00LMentorierte Arbeit Fachdidaktik Mathematik A Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachdidaktik Mathematik für DZ und Lehrdiplom.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in Fachdidaktik setzen die Studierenden Inhalte der Fachdidaktikvorlesungen praktisch um und vertiefen sie. Unter Anleitung erstellen sie lernwirksame Unterrichtsmaterialien und/oder analysieren und reflektieren bestimmte Themen unter fachdidaktischen und pädagogischen Gesichtspunkten.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein Unterrichtsthema einarbeiten können, indem sie verschiedene Quellen sichten, Materialien beschaffen und über die Relevanz des Themas und des von ihnen gewählten Zugangs in fachlicher, fachdidaktischer, pädagogischer und eventuell gesellschaftlicher Hinsicht reflektieren.
- zeigen, dass sie selbstständig eine lernwirksame Unterrichtssequenz erstellen und zur Einsatzreife bringen können.
InhaltThematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9984-00LMentorierte Arbeit Fachdidaktik Mathematik B Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachdidaktik Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in Fachdidaktik setzen die Studierenden Inhalte der Fachdidaktikvorlesungen praktisch um und vertiefen sie. Unter Anleitung erstellen sie lernwirksame Unterrichtsmaterialien und/oder analysieren und reflektieren bestimmte Themen unter fachdidaktischen und pädagogischen Gesichtspunkten.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein Unterrichtsthema einarbeiten können, indem sie verschiedene Quellen sichten, Materialien beschaffen und über die Relevanz des Themas und des von ihnen gewählten Zugangs in fachlicher, fachdidaktischer, pädagogischer und eventuell gesellschaftlicher Hinsicht reflektieren.
- zeigen, dass sie selbstständig eine lernwirksame Unterrichtssequenz erstellen und zur Einsatzreife bringen können.
InhaltThematische Schwerpunkte
Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht.

Lernformen
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9985-00LMentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik A Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für DZ und Lehrdiplom.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken.
Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
LernzielDas Ziel ist, dass die Studierenden
- sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können.
- selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können.
- Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren.
InhaltThematische Schwerpunkte:
Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um.

Lernformen:
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte
Arbeit ist Teil des Portfolios der Studierenden.
SkriptEine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.
LiteraturDie Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.
Voraussetzungen / BesonderesDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9986-00LMentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik B Belegung eingeschränkt - Details anzeigen
Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Mathematik für Lehrdiplom und für Studierende, die von DZ zu Lehrdiplom gewechselt haben.
2 KP4AM. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede
KurzbeschreibungIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
Lernziel
406-0251-AALMathematics I Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RL. Halbeisen
KurzbeschreibungThis course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations.
LernzielMathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.

The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses.
Inhalt1. Linear Algebra and Complex Numbers:
systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.

2. Single-Variable Calculus:
review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals.

3. Ordinary Differential Equations:
separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems.
Literatur- Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall).
- Thomas, G. B.: Thomas' Calculus, Part 1 - Early Transcendentals (Pearson Addison-Wesley).
Voraussetzungen / BesonderesPrerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative.

Assistance:
Tuesdays and Wednesdays 17-19h, in Room HG E 41.