Kristina Shea: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Kristina Shea
FieldEngineering Design und Computing
Chair in Engin. Design & Computing
ETH Zürich, CLA F 35
Tannenstrasse 3
8092 Zürich
Telephone+41 44 632 04 79
DepartmentMechanical and Process Engineering
RelationshipFull Professor

151-0062-10LEngineering Tool: Computer-Aided Design Methods Restricted registration - show details
All Engineering Tools courses are for MAVT Bachelor’s degree students only.

Number of participants limited to 25.
0.4 credits1KT. Stankovic, K. Shea
AbstractParticipants will learn about the Computer-Aided Design fundamentals and methods that are necessary to model complex technical products. The focus will be placed on feature-based and parametric modelling that is common to all modern CAD tools used in mechanical engineering design.
ObjectiveCAD knowledge and skills will be further developed to enable students to recognize both the advantages and the limitations of current Computer-Aided Design tools. Examples of how to build feature-based and parametric models including design automation will be given along with common pitfalls. After taking the course students should be able to independently create effective feature-based and parametric models of mechanical parts.
Content1. CAD Methods and Feature-Based Design (2 afternoons):
* CAD in the context of the design process
* Feature types and their relation to mechanical design
* Strategies for building feature-based assemblies
* Integration of digital part libraries
* Common issues and difficulties with feature interaction

2. CAD and Parametric Modeling (1 afternoon):
* Designing and building parametric models
* Design automation to create design variants
* Common issues and difficulties with parametric modelling
Lecture notesavailable on Moodle
151-0321-00LTechnical Drawing and CAD Restricted registration - show details
Only for Mechanical Engineering BSc.
4 credits4GK. Shea
AbstractFundamentals of Technical Drawing and Computer Aided Design (CAD). Introduction to the design process and sketching. Create and read technical drawings. Create 3D models in CAD and fabricate them directly using additive manufacturing (3D printing).
ObjectiveThe lecture and exercises teach the fundamentals of technical drawing and CAD. After taking the course students will be able to create accurate technical drawings of parts and assemblies as well as read them. Students will also be able to create models of parts and assemblies in a 3D, feature-based CAD system. They will understand the links with simulation, product data management (PDM) and additive manufacturing.
ContentIntroduction to Engineering Design
Sketching in Engineering Design

Technical Drawing:
- projections and views
- cuts
- notations
- primitives
- ISO norm elements
- dimensioning
- tolerances
- assemblies
- documentation

- CAD basics
- CAD modeling methods
- sketch modeling
- modeling operations
- feature-based modeling
- assemblies
- creating 2D drawings from 3D parts
- links to simulation, e.g. kinematics
- links to model variants and Product Data Management (PDM)
- links to additive manufacturing (3D printing)
Lecture notesLecture slides and exercise handouts are available on the course Moodle website:
LiteratureIn addition to the lecture material the following books are recommended (only in German):

Technisches Zeichnen: selbstständig lernen und effektiv üben
Susanna Labisch und Christian Weber
2008 Vieweg
ISBN: 978-3-8348-0312-2 ;ISBN: 978-3-8348-9451-9 (eBook)
eBook (accessible from the ETH domain):

VSM Normen-Auszugs 2010
14. Auflage, ISBN 978-3-03709-049-7
(kann in den Übungen bestellt und gekauft werden)

Marcel Schmid
CAD mit NX: NX 8
J.Schlembach Fachverlag
ISBN: 978-3-935340-72-4
Prerequisites / NoticeThis course is given as a lecture (1h /week) and an exercise (3h/week). Students are split into working groups for the exercises with a maximum of 20 students per group.

Semester Fee
A fee is charged for printed copies of the course handouts.

This course is only passed if 9 out of 11 exercises are submitted during the semester and the final test is passed. If an insufficient number of exercises are submitted or the final test is not passed, then the course is failed («no show»).
151-3209-00LEngineering Design Optimization Restricted registration - show details
Number of participants limited to 47.
4 credits4GK. Shea, T. Stankovic
AbstractThe course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them.
ObjectiveThe lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based.
Content1. Optimization modeling and theory 2. Unconstrained optimization methods 2. Constrained optimization methods - linear and non-linear 4. Direct search methods 5. Stochastic and evolutionary search methods 6. Multi-objective optimization
Lecture notesavailable on Moodle
151-3213-00LIntegrative Ski Building Workshop Restricted registration - show details
Number of participants limited to 12.

To apply, please send the following information to by 31.08.2020: Letter of Motivation (one page) , CV, Transcript of Records.
4 credits9PK. Shea
AbstractThis course introduces students to engineering design and fabrication by building their own skis or snowboard. Theoretical and applied engineering design skills like CAD, analysis and engineering of mechanical properties, 3D printing, laser cutting and practical handcrafting skills are acquired in the course.
ObjectiveThe objectives of the course are to use the practical ski/board design and building exercise to gain hands-on experience in design, mechanics and materials. A selection of sustainable materials are also used to introduce students to sustainable design. The built skis/board will be mechanically tested in the lab as well as together out in the field on a ski day and evaluated from various perspectives. Students can keep their personal built skis/boards after the course.
ContentThis practical ski/board design and building workshop consists of planning, designing, engineering and building your own alpine ski or snowboard. Students learn and execute all the needed steps in the process, such as engineering design, CAD, material selection, analysis of the mechanical properties of a composite layup, fabrication, routing wood cores, 3D printing of plastic protectors, milling side walls from wood or ABS plastic, laying up the fibers from carbon, glas, basalt or flax, laminating with resins, sanding and finishing, as well as laser engraving and veneer wood inlays.
Lecture notesavailable on Moodle
Prerequisites / NoticeWillingness to engage in the practical building of your ski/board also beyond the course hours in the evening.