Klaas Stephan: Katalogdaten im Frühjahrssemester 2020 |
Name | Herr Prof. Dr. Klaas Stephan |
Lehrgebiet | Translationale Neuromodellierung und Komputationale Psychiatrie |
Adresse | Professur f. Transl. Neuromodeling ETH Zürich, WIL G 203 Wilfriedstrasse 6 8032 Zürich SWITZERLAND |
Telefon | +41 44 634 91 25 |
Fax | +41 44 634 91 31 |
stephan@biomed.ee.ethz.ch | |
Departement | Informationstechnologie und Elektrotechnik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
227-0967-00L | Computational Neuroimaging Clinic | 3 KP | 2V | K. Stephan | |
Kurzbeschreibung | This seminar teaches problem solving skills for computational neuroimaging (incl. associated computational analyses of behavioural data). It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g., concerning mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data. | ||||
Lernziel | 1. Consolidation of theoretical knowledge (obtained in one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry') in a practical setting. 2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data. | ||||
Inhalt | This seminar teaches problem solving skills for computational neuroimaging (incl. associated computational analyses of behavioural data). It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g., concerning mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data. | ||||
Voraussetzungen / Besonderes | The participants are expected to be familiar with general principles of statistics and have successfully completed at least one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry' | ||||
227-0970-00L | Research Topics in Biomedical Engineering | 0 KP | 2K | K. P. Prüssmann, S. Kozerke, M. Stampanoni, K. Stephan, J. Vörös | |
Kurzbeschreibung | Current topics in Biomedical Engineering presented mostly by external speakers from academia and industry. | ||||
Lernziel | see above | ||||
227-0973-00L | Translational Neuromodeling | 8 KP | 3V + 2U + 1A | K. Stephan | |
Kurzbeschreibung | This course provides a systematic introduction to Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). It focuses on a generative modeling strategy and teaches (hierarchical) Bayesian models of neuroimaging data and behaviour, incl. exercises. | ||||
Lernziel | To obtain an understanding of the goals, concepts and methods of Translational Neuromodeling and Computational Psychiatry/Psychosomatics, particularly with regard to Bayesian models of neuroimaging (fMRI, EEG) and behavioural data. | ||||
Inhalt | This course provides a systematic introduction to Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). The first part of the course will introduce disease concepts from psychiatry and psychosomatics, their history, and clinical priority problems. The second part of the course concerns computational modeling of neuronal and cognitive processes for clinical applications. A particular focus is on Bayesian methods and generative models, for example, dynamic causal models for inferring neuronal processes from neuroimaging data, and hierarchical Bayesian models for inference on cognitive processes from behavioural data. The course discusses the mathematical and statistical principles behind these models, illustrates their application to various psychiatric diseases, and outlines a general research strategy based on generative models. Lecture topics include: 1. Introduction to Translational Neuromodeling and Computational Psychiatry/Psychosomatics 2. Psychiatric nosology 3. Pathophysiology of psychiatric disease mechanisms 4. Principles of Bayesian inference and generative modeling 5. Variational Bayes (VB) 6. Bayesian model selection 7. Markov Chain Monte Carlo techniques (MCMC) 8. Bayesian frameworks for understanding psychiatric and psychosomatic diseases 9. Generative models of fMRI data 10. Generative models of electrophysiological data 11. Generative models of behavioural data 12. Computational concepts of schizophrenia, depression and autism 13. Model-based predictions about individual patients Practical exercises include mathematical derivations and the implementation of specific models and inference methods. In additional project work, students are required to use one of the examples discussed in the course as a basis for developing their own generative model and use it for simulations and/or inference in application to a clinical question. Group work (up to 3 students) is permitted. | ||||
Literatur | See TNU website: https://www.tnu.ethz.ch/en/teaching.html | ||||
Voraussetzungen / Besonderes | Good knowledge of principles of statistics, good programming skills (MATLAB or Python) | ||||
227-0974-00L | TNU Colloquium | 0 KP | 2K | K. Stephan | |
Kurzbeschreibung | This colloquium discusses research topics in Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and Computational Psychiatry/Psychosomatics (the application of these models to concrete clinical questions). The range of topics is broad, incl. computational techniques, experimental paradigms (fMRI, EEG, behaviour), and clinical questions. | ||||
Lernziel | see above | ||||
227-0976-00L | Computational Psychiatry & Computational Psychosomatics Number of participants limited to 24. Information for UZH students: Enrolment to this course unit only possible at ETH Zurich. No enrolment to module BMT20002. Please mind the ETH enrolment deadlines for UZH students: Link | 2 KP | 4S | K. Stephan | |
Kurzbeschreibung | This seminar deals with the development of clinically relevant computational tools and/or their application to psychiatry and psychosomatics. Complementary to the annual Computational Psychiatry Course, it serves to build bridges between computational scientists and clinicians and is designed to foster in-depth exchange, with ample time for discussion | ||||
Lernziel | Understanding strengths and weaknesses of current trends in the development of clinically relevant computational tools and their application to problems in psychiatry and psychosomatics. | ||||
Inhalt | This seminar deals with the development of computational tools (e.g. generative models, machine learning) and/or their application to psychiatry and psychosomatics. The seminar includes (i) presentations by computational scientists and clinicians, (ii) group discussion with focus on methodology and clinical utility, (iii) self-study based on literature provided by presenters. | ||||
Literatur | Literature for additional self-study of the topics presented in this seminar will be provided by the presenters and will be available online at https://www.tnu.ethz.ch/en/teaching.html | ||||
Voraussetzungen / Besonderes | Participants are expected to be familiar with general principles of statistics (including Bayesian statistics) and have successfully completed the course “Computational Psychiatry” (Course number 227-0971-00L). | ||||
377-0601-00L | Psychiatrie & Computational Psychiatry Nur für Humanmedizin BSc | 2 KP | 2G | K. Stephan, A.‑S. Petrescu, H. Schmidt, J. Siemerkus | |
Kurzbeschreibung | Im Modul Psychiatrie & Computational Psychiatry werden die häufigsten psychiatrischen Erkrankungen – inklusive Ätiologie, Diagnostik und Therapie – vorgestellt. Zudem lernen die Studierenden, unter Anleitung eines Klinikers, einen psychopathologischen Befund in der Praxis zu erheben. Das Modul schliesst mit einer Einführung zu Konzepten und Anwendungen der Computational Psychiatry. | ||||
Lernziel | Nach erfolgreichem Abschluss des Moduls „Psychiatrie & Computational Psychiatry“ sollten die Studierende in der Lage sein: 1. Eine ausführliche psychiatrische Anamnese zu erstellen 2. Methoden der psychiatrischen Gesprächsführung zu nutzen 3. Einen vertrauensvollen, wertungsfreien Arzt-Patienten-Kontakt zu entwickeln 4. Einen psychopathologischen Befund (gemäss AMDP) zu erheben 5. Die Diagnosekriterien gemäss ICD-10 für die wichtigsten Erkrankungen zu benennen 6. Störungsspezifische Symptome zu identifizieren und zu erklären 7. Störungsspezifische Behandlungen zu benennen 8. Die Wirkmechanismen, Indikationen und Nebenwirkungen von psychiatrischen Medikamenten zu beschreiben 9. Grundlagen der psychotherapeutischen Verfahren wiederzugeben 10. Sich mit den eigenen Emotionen während schwierigen Patientengesprächen auseinanderzusetzen 11. Die Konzepte und methodischen Ansätze der Komputationalen Psychiatrie zu verstehen | ||||
Inhalt | Die Studierende lernen im Modul „Psychiatrie & Computational Psychiatry“ die Epidemiologie, Ätiologie, Pathogenese, Klinik, Diagnostik und Behandlung der wichtigsten psychiatrischen Krankheitsbilder kennen. Dies gilt für die folgenden Erkrankungen: • Depression und Bipolare Störungen • Schizophrenie-Spektrum-Störungen • Autismus-Spektrum-Störungen • Abhängigkeiten • Angststörungen • Zwangsstörungen • Demenz • Persönlichkeitsstörungen Darüber hinaus werden Kenntnisse über die häufigsten psychiatrischen Notfälle und deren Behandlung vermittelt. Weitere Themen des Moduls: • Einführung in die Konzepte von ICD und DSM • Kommunikation und Interaktion mit psychisch erkrankten Personen • Psychiatrische Anamnese • Allgemeine und störungsspezifische Einführung in die Psychopathologie mit • Exploration eines psychopathologischen Befundes (gemäss AMDP). Dazu gehören: Bewusstseinsstörungen, Orientierungsstörungen, Aufmerksamkeits- und Gedächtnisstörungen, Formale Denkstörungen, Befürchtungen und Zwänge, Wahn, Sinnestäuschungen, Ich-Störungen, Störungen der Affektivität, Antriebs- und psychomotorische Störungen, zirkadiane Besonderheiten, andere Störungen • Einführung in die Komputationale Psychiatrie, inklusive krankheitsübergreifende Konzepte und Methoden (z.B. die Theorie des Bayesianischen Gehirns, mathematische Modelle von Hirnaktivität) sowie komputationale Theorien der Schizophrenie, des Autismus, der Psychosomatik, der Depression und Fatigue sowie der Achtsamkeit | ||||
Voraussetzungen / Besonderes | Voraussetzung: alle medizinischen und klinischen Module der 1. - 5. Semester |