Klaas Stephan: Catalogue data in Spring Semester 2019

Name Prof. Dr. Klaas Stephan
FieldTranslational Neuromodelling and Computational Psychiatry
Address
Professur f. Transl. Neuromodeling
ETH Zürich, WIL G 203
Wilfriedstrasse 6
8032 Zürich
SWITZERLAND
Telephone+41 44 634 91 25
Fax+41 44 634 91 31
E-mailstephan@biomed.ee.ethz.ch
DepartmentInformation Technology and Electrical Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
227-0967-00LComputational Neuroimaging Clinic Information 3 credits2VK. Stephan
AbstractThis seminar teaches problem solving skills for computational neuroimaging (incl. associated computational analyses of behavioural data). It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g., concerning mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
Learning objective1. Consolidation of theoretical knowledge (obtained in one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry') in a practical setting.
2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data.
ContentThis seminar teaches problem solving skills for computational neuroimaging (incl. associated computational analyses of behavioural data). It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g., concerning mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
Prerequisites / NoticeThe participants are expected to be familiar with general principles of statistics and have successfully completed at least one of the following courses:
'Methods & models for fMRI data analysis',
'Translational Neuromodeling',
'Computational Psychiatry'
227-0970-00LResearch Topics in Biomedical Engineering Information 0 credits2KK. P. Prüssmann, M. Stampanoni, K. Stephan, J. Vörös
AbstractCurrent topics in Biomedical Engineering presented mostly by external speakers from academia and industry.
Learning objectivesee above
227-0973-00LTranslational Neuromodeling Information 8 credits3V + 2U + 1AK. Stephan
AbstractThis course provides a systematic introduction to Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). It focuses on a generative modeling strategy and teaches (hierarchical) Bayesian models of neuroimaging data and behaviour, incl. exercises.
Learning objectiveTo obtain an understanding of the goals, concepts and methods of Translational Neuromodeling and Computational Psychiatry/Psychosomatics, particularly with regard to Bayesian models of neuroimaging (fMRI, EEG) and behavioural data.
ContentThis course provides a systematic introduction to Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). The first part of the course will introduce disease concepts from psychiatry and psychosomatics, their history, and clinical priority problems. The second part of the course concerns computational modeling of neuronal and cognitive processes for clinical applications. A particular focus is on Bayesian methods and generative models, for example, dynamic causal models for inferring neuronal mechanisms from neuroimaging data, and hierarchical Bayesian models for inference on cognitive mechanisms from behavioural data. The course discusses the mathematical and statistical principles behind these models, illustrates their application to various psychiatric diseases, and outlines a general research strategy based on generative models.

Lecture topics include:
1. Introduction to Translational Neuromodeling and Computational Psychiatry/Psychosomatics
2. Psychiatric nosology
3. Pathophysiology of psychiatric disease mechanisms
4. Principles of Bayesian inference and generative modeling
5. Variational Bayes (VB)
6. Bayesian model selection
7. Markov Chain Monte Carlo techniques (MCMC)
8. Bayesian frameworks for understanding psychiatric and psychosomatic diseases
9. Generative models of fMRI data
10. Generative models of electrophysiological data
11. Generative models of behavioural data
12. Computational concepts of schizophrenia, depression and autism
13. Model-based predictions about individual patients

Practical exercises include mathematical derivations and the implementation of specific models or inference methods. In additional project work, students are required to use one of the examples discussed in the course as a basis for developing their own generative model and use it for simulations and/or inference in application to a clinical question. Group work (up to 3 students) is permitted.
LiteratureSee TNU website:
https://www.tnu.ethz.ch/en/teaching.html
Prerequisites / NoticeKnowledge of principles of statistics, programming skills (MATLAB or Python)
227-0974-00LTNU Colloquium Restricted registration - show details 0 credits2KK. Stephan
AbstractThis colloquium discusses research topics in Translational Neuromodeling (the development of mathematical models for diagnostics of brain diseases) and Computational Psychiatry/Psychosomatics (the application of these models to concrete clinical questions). The range of topics is broad, incl. computational techniques, experimental paradigms (fMRI, EEG, behaviour), and clinical questions.
Learning objectivesee above