Andrea Castelletti: Catalogue data in Spring Semester 2019

Name Dr. Andrea Castelletti
Address
Institut für Umweltingenieurwiss.
ETH Zürich, HIL D 23.3
Stefano-Franscini-Platz 5
8093 Zürich
SWITZERLAND
E-mailcasandre@ethz.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipLecturer

NumberTitleECTSHoursLecturers
118-0112-00LParticipatory and Integrated Water Resources Planning Restricted registration - show details
Number of participants limited to 25.

The course is complementary to "Water Resources Management" (102-0488-00L).
3 credits2.2VA. Castelletti
AbstractThe course develops basic knowledge and skills for modelling, planning and managing water resources systems in a balanced and sustainable way. The emphasis will be on the operational aspects of water management, including: introduction to participatory decision-making, modelling of the multiple stakes and socio-economic processes, introduction to dynamic and stochastic optimization approaches.
Learning objectiveThe course aims at illustrating the complex framework of participatory approach in the field of water resources projects, with particular focus on the modelling of the quantitative aspects of the combined dynamics of the physical and socio-economic processes.
ContentLec 00. Course introduction. The world water resources. Water crisis and the concept of Participatory and Integrated Water Resources Management (PIWRM). Water trading.

Lec 01. Rationalizing the decision-making process. From traditional water resources planning and management to PIWRM: rationalizing and supporting the decision-making process. The need for negotiations. Negotiation game.
Outline of the Participatory and Integrated Planning procedure proposed as a guidance to the decision-making process using a real world case study.

Lec 02. Cloosing the loop: how to plan the management. How to incorporate recurrent management decisions into a rational decision-making framework. From model based decision-making to decision support systems. Full-rationality and partial-rationality. Underlying example the Zambezi river system.

Lec 03. Actions and evaluation criteria. Identification of the actions suitable to pursue the overall objective of the planning exercise. Type of actions and associated property. Embedding actions into models. Stakeholders, sectors and evaluation criteria: how stakeholders evaluate the planning alternatives. Criterion hierarchy and indicators: operationalize evaluation criteria.

Lec 04. Criteria and indicators. Example of indicators. Validation of the indicators against the stakeholders. Numerical exercise. Underlying examples from Red River System (Vietnam), Tono dam (Japan), Googong reservoir (Australia), Lake Maggiore and Lake Como (Italy).

Lec 05. Re-operating the Kafue reservoir system. Real world case study developed interactively with the students, to experience all the concepts provided in the previous lectures. Reading material will be assigned on 22.3

Lec 06. Models of a water system. The system analysis perspective on water resources modelling. Example of models of water system components (reservoir, diversion dam, rivers, users). Implications of cooperation and information sharing on the model formulation. Operational implications of model complexity. Case studies.

Lec 07. Formulation of the planning/management problem. Why we need it. What do we need to formulate the problem: from the indicators to the objectives; time horizon; scenarios. Dealing with uncertainty. Problem formulation and classification. How do modelling choices affect the final solution (hidden subjectivity).

Lec 08. Water resources optimal planning. The planning of water resources. Examples from real world problems at different scales (e.g. Egypt Water plan; Controlling salt intrusion in Nauru (Pacific Island); planning water quality remediation interventions in lakes and reservoirs (Googong reservoir, Australia)). Interactive lectures with students. Overview of the different approaches available to resolve the problem, from exact solution to heuristic.

Lec 09. Planning the New Valley water system in Egypt. Real world case study developed interactively with the student, to experience all the concepts provided in the previous lectures.

Lec 10. Planning in non stationary conditions: the Red River (Vietnam). Real world case study developed interactively with the student, to experience all the concepts provided in the previous lectures.
Lecture notesCourse lectures are almost fully covered by the following two textbooks accordingly to the indications provided at the end of each lecture:

R. Soncini-Sessa, A. Castelletti, and E. Weber, 2007. Integrated and participatory water resources management. Theory. Elsevier, The Netherlands.

R. Soncini-Sessa, F. Cellina, F. Pianosi, and E. Weber, 2007. Integrated and participatory water resources management. Practice. Elsevier, The Netherlands.
LiteratureAdditional readings:
S.P. Simonovic, 2009. Managing water resources: Methods and tools for a systems approach, Earthscan, London.
D.P. Loucks, E. van Beek, 2005. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications, UNESCO, Paris.
K.D.W. Nandalal, J. Bogardi, 2007. Dynamic Programming Based Operation of Reservoirs, Cambridge University Press, Cambridge.
Prerequisites / NoticeLecture notes, slides and other material will be posted on the course web page the day before each lecture.
118-0112-01LParticipatory and Integrated Water Resources Planning Laboratory Information Restricted registration - show details
Number of participants limited to 20.

Only for MAS in Sustainable Water Resources and Environmental Engineering MSc.

This course (118-0112-01 laboratory) can only be taken in combination with 118-0112-00 (theory part).
2 credits1UA. Castelletti, M. Giuliani
AbstractThe course allows the students to apply concepts and methods concerning planning and management of water resources systems by developing a numerical exercise based on the real-world case study.
The theoretical framework will be given in the course "Participatory and Integrated Water Resources Planning" (118-0112-00)
Learning objectiveAnalyse and model the relationship between hydropower generation and other water related interests (both socio-economic and environmental) in the proposed real-world case study.
Explore the effects of different hydropower reservoirs' operation strategies on the identified relationships and identify potential fair tradeoffs in water resources allocation.
ContentStudents will develop a project in small groups.
The group work is organized according to the following structure
- Water system analysis
- Identification of criteria and indicators for water related interests
- Coding of water system model and indicators
- Scenario definition
- Design of the reservoir operation strategies
- Comparison and selection of interesting strategies
Lecture notesReading material (scientific papers, reports, etc.).
Handouts for each step of the group work.
Examples of code (basic programming and Matlab knowledge required)
Prerequisites / NoticeThis course (118-0112-01 exercises) can only be taken in combination with 118-0112-00 (theory part).
Basic programming and Matlab knowledge required.