Maria Schönbächler: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Maria Schönbächler
FieldIsotope Geochemistry
Address
Inst. für Geochemie und Petrologie
ETH Zürich, NW D 81.2
Clausiusstrasse 25
8092 Zürich
SWITZERLAND
Telephone+41 44 632 37 92
Fax+41 44 632 11 79
E-mailmaria.schoenbaechler@eaps.ethz.ch
DepartmentEarth and Planetary Sciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
651-0254-00LSeminar Geochemistry and Petrology0 credits2SO. Bachmann, M. Schönbächler, C. Chelle-Michou, M. W. Schmidt, D. Vance
AbstractSeminar series with external and occasional internal speakers addressing current research topics. Changing programs announced via D-ERDW homepage (Veranstaltungskalender)
Learning objectivePresentations on isotope geochemistry, cosmochemistry, fluid processes, economic geology, petrology, mineralogy and experimental studies. Mostly international speakers provide students, department members and interested guests with insight into current research topics in these fields.
ContentWöchentliches Seminar mit Fachvorträgen eingeladener oder interner Wissenschafter, vornehmlich zu Themen der Geochemie, Isotogengeologie, Hydrothermalgeochemie, Lagerstättenbildung, Petrologie, Mineralogie und experimentelle Studien.
651-3001-00LDynamic Earth I Restricted registration - show details 6 credits4V + 2UO. Bachmann, A. Galli, A. Fichtner, L. Krischer, M. Lupker, M. Schönbächler, S. Willett
AbstractProvides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory.
Learning objectiveUnderstanding basic geological and geophysical processes
ContentOverview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Excercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures.
Lecture noteswerden abgegeben.
LiteratureGrotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed.
Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage.
Prerequisites / NoticeExercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.
651-3400-00LGeochemistry I
The course replaces 651-3400-00 Geochemie. Students who completed 651-3400-00 Geochemie are not eligible to Geochemie I.
4 credits3GM. Schönbächler, D. Vance
AbstractIntroduction to geochemistry and its application to the study of the origin and evolution of the Earth and planets.
Learning objectiveGain an overview of geochemical methods used in various fields of Earth Sciences and how they can be applied to study geological processes in the Earth’s mantle, crust, oceans and atmosphere.
ContentThis course is an introduction into geochemistry with a special focus on the basic concepts used in this rapidly evolving field. The course deals with the geochemist's toolbox: the basic chemical and nuclear properties of elements from the periodic table and how these elements can be used to ask fundamental questions in Earth Sciences. The important concepts used in solid-solution-gas equilibria are introduced. The concepts of chemical reservoirs and geochemical cycles are discussed with examples from the carbon cycle in the Earth. The course also addresses geological applications in low- and high-temperature geochemistry, including the formation of continents, the differentiation of the Earth, the geochemistry of ocean and continental waters.
Lecture notesThe slides are available online.
LiteratureH. Y. McSween et al.: Geochemistry - Pathways and Processes,
2nd ed. Columbia Univ. Press (2003)

William White: Geochemistry, Wiley-Blackwell Chichester (2013)
Prerequisites / NoticePrerequisite: chemical thermodynamics, basic inorganic chemistry and physics.
651-3501-00LGeochemistry II3 credits2GS. Bernasconi, M. Schönbächler
AbstractThe course focuses on the most important systems of radioactive and stable isotopes used in geochemistry and geology. Applications of isotope geochemistry for solving fundamental geological problems are discussed on the basis of case studies.
Learning objectiveDevelopment of a basic knowledge and understanding of the applications of the most important systems of stable and radiogenic isotopes.
ContentThe following methods will be discussed in detail: the radioactive-radiogenic systems Rb-Sr, Sm-Nd, U-Th-Pb and K-Ar, as well as the stable isotope systems of oxygen, carbon, nitrogen, sulfur and hydrogen.

We will discuss how these methods are used in the following research fields: geochemistry of the earth, age dating, paleotemperature reconstructions, evolution of the crust and mantle reservoirs, sediment diagenesis, fluid rock interactions, hydrothermal activity, paleoceanography, biogeochemical cycles.
Lecture notesSlides are provided online.
Literature- Gunter Faure and Teresa M. Mensing. (2005): Isotopes : principles and applications. 3nd Ed. John Wiley & Sons. 897.pp

- Dickin A. P., Radiogenic Isotope Geology, (2005), Cambridge University Press

- Sharp Z.D. (2006) Principles of stable isotope geochemistry. Prentice Hall 360 pp.
can be downloaded for free from http://csi.unm.edu

William White (2011) Geochemistry
http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML
Prerequisites / NoticePrerequisites:

Geochemie I: (Bachelor course)
651-4227-00LPlanetary Geochemistry3 credits2GM. Schönbächler, H. Busemann, A. Hunt
AbstractFormation and evolution of the solar system and its planets from a geochemical perspective
Learning objectiveTo understand the formation and evolution of the solar system and its planets from a geochemical perspective
ContentThe Sun and solid objects in the solar system (planets, comets, asteroids, meteorites, interplanetary dust) are discussed from a geochemical perspective. What does their present-day composition tell us about the origin, formation and evolution of the solar system? The lectures introduce the basics of the terrestrial and giant planets, comets and asteroids, gained from modern space missions and the study of extraterrestrial materials. The chemical and isotopic composition of meteorites, being the most primitive material available for study, is a further major topic.
Lecture notesSildes and additional materials are available electronically