Maria Schönbächler: Catalogue data in Autumn Semester 2017

Name Prof. Dr. Maria Schönbächler
FieldIsotope Geochemistry
Address
Inst. für Geochemie und Petrologie
ETH Zürich, NW D 81.2
Clausiusstrasse 25
8092 Zürich
SWITZERLAND
Telephone+41 44 632 37 92
Fax+41 44 632 11 79
E-mailmaria.schoenbaechler@erdw.ethz.ch
DepartmentEarth Sciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
651-0254-00LSeminar Geochemistry and Petrology0 credits2SO. Bachmann, M. Schönbächler, C. A. Heinrich, M. W. Schmidt, D. Vance
AbstractSeminar series with external and occasional internal speakers addressing current research topics. Changing programs announced via D-ERDW homepage (Veranstaltungskalender)
ObjectivePresentations on isotope geochemistry, cosmochemistry, fluid processes, economic geology, petrology, mineralogy and experimental studies. Mostly international speakers provide students, department members and interested guests with insight into current research topics in these fields.
ContentWöchentliches Seminar mit Fachvorträgen eingeladener oder interner Wissenschafter, vornehmlich zu Themen der Geochemie, Isotogengeologie, Hydrothermalgeochemie, Lagerstättenbildung, Petrologie, Mineralogie und experimentelle Studien.
651-3001-AALDynamic Earth I and II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
11 credits24RE. Kissling, M. Schönbächler
AbstractProvides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory.
ObjectiveUnderstanding basic geological and geophysical processes
ContentOverview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Excercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures.
Lecture noteswerden abgegeben.
LiteratureGrotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed.
Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage.
Prerequisites / NoticeExercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.
651-3001-00LDynamic Earth I6 credits4V + 2UG. Bernasconi-Green, E. Kissling, O. Bachmann, T. Kraft, M. Lupker, M. Schönbächler, S. Willett
AbstractProvides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory.
ObjectiveUnderstanding basic geological and geophysical processes
ContentOverview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Excercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures.
Lecture noteswerden abgegeben.
LiteratureGrotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed.
Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage.
Prerequisites / NoticeExercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.
651-3400-00LGeochemistry I Information
Dieser Kurs ersetzt 651-3400-00 Geochemie. Sofern Geochemie absolviert wurde, darf der Kurs nicht belegt werden.
4 credits3GM. Schönbächler, D. Vance
AbstractIntroduction to geochemistry and its application to the study of the origin and evolution of the Earth and planets.
ObjectiveGain an overview of geochemical methods used in various fields of Earth Sciences and how they can be applied to study geological processes in the Earth’s mantle, crust, oceans and atmosphere.
ContentThis course is an introduction into geochemistry with a special focus on the basic concepts used in this rapidly evolving field. The course deals with the geochemist's toolbox: the basic chemical and nuclear properties of elements from the periodic table and how these elements can be used to ask fundamental questions in Earth Sciences. The important concepts used in solid-solution-gas equilibria are introduced. The concepts of chemical reservoirs and geochemical cycles are discussed with examples from the carbon cycle in the Earth. The course also addresses geological applications in low- and high-temperature geochemistry, including the formation of continents, the differentiation of the Earth, the geochemistry of ocean and continental waters.
Lecture notesAvailable
LiteratureH. Y. McSween et al.: Geochemistry - Pathways and Processes,
2nd ed. Columbia Univ. Press (2003)

William White: Geochemistry, Wiley-Blackwell Chichester (2013)
Prerequisites / NoticePrerequisite: chemical thermodynamics, basic inorganic chemistry and physics.
651-4049-00LConceptual and Quantitative Methods in Geochemistry
For this course the successful completion of the BSc-course "Geochemistry" (651-3400-00L) is a condition.
3 credits2GO. Bachmann, M. Schönbächler, D. Vance, K. W. Burton
AbstractThis course will introduce some of the main quantitative methods available for the quantitative treatment of geochemical data, as well as the main modelling tools. Emphasis will both be on conceptual understanding of these methods as well as on their practical application, using key software packages to analyse real geochemical datasets.
ObjectiveDevelopment of a basic knowledge and understanding of the main tools available for the quantitative analysis of geochemical data.
ContentThe following approaches will be discussed in detail: major and trace element modelling of magmas, with application to igneous systems; methods and statistics for calculation of isochrons and model ages; reservoir dynamics and one-dimensional modelling of ocean chemistry; modelling speciation in aqueous (hydrothermal, fresh water sea water) fluids.

We will discuss how these methods are applied in a range of Earth Science fields, from cosmochemistry, through mantle and crustal geochemistry, volcanology and igneous petrology, to chemical oceanography.

A special emphasis will be put on dealing with geochemical problems through modeling. Where relevant, software packages will be introduced and applied to real geochemical data.
Lecture notesSlides of lectures will be available.
Prerequisites / NoticePre-requisite: Geochemistry (651-3400-00L), Isotope Geochemistry and Geochronology (651-3501-00L).
651-4227-00LPlanetary Geochemistry3 credits2GM. Schönbächler, H. Busemann, A. Hunt
AbstractFormation and evolution of the solar system from a geochemical perspective
ObjectiveTo understand the formation and evolution of the solar system and its planets from a geochemical perspective
ContentThe Sun and solid objects in the solar system (planets, comets, asteroids, meteorites, interplanetary dust) are discussed from a geochemical perspective. What does their present-day composition tell us about the origin, formation and evolution of the solar system? The lectures introduce the basics of the terrestrial and giant planets, comets and asteroids, gained from modern space missions and the study of extraterrestrial materials. The chemical and isotopic composition of meteorites, being the most primitive material available for study, is a further major topic.
Lecture notesavailable electronically