René Verel: Catalogue data in Autumn Semester 2020 |
Name | Dr. René Verel |
Address | Lab. für Anorganische Chemie ETH Zürich, HCI D 117 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 632 67 93 |
verelr@ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-0141-00L | Physical Methods for Inorganic Chemistry | 6 credits | 3G | M. D. Wörle, D. Günther, J. Koch, R. Verel | |
Abstract | Introduction into the important methods for structural analysis (solid state NMR), crystal structure analysis and surface analysis techniques and their applications | ||||
Learning objective | Knowledge in solid state NMR, crystal structure analysis and surface analytical techniques relevant for inorganic materials | ||||
Content | This lecture course consists of three parts 1) Solid-state NMR 2) Surface and direct solid analysis 3) Crystal structure anaylsis. Most important fundamentals of the individual methods will be presented and details will be explained on most relevant inorganic applications | ||||
Lecture notes | Will be given during the lectures | ||||
529-2001-02L | Chemistry I | 4 credits | 2V + 2U | J. Cvengros, J. E. E. Buschmann, P. Funck, S. Hug, E. C. Meister, R. Verel | |
Abstract | General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium. | ||||
Learning objective | Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems. | ||||
Content | 1. Stoichiometry Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law. 2. Atoms Elementary particles and atoms. Electron configuration of the elements. Periodic system. 3. Chemical bonding and its representation. Spatial arrangement of atoms in molecules. Molecular orbitals. 4. Basics of chemical thermodynamics System and surroundings. Description of state and change of state of chemical systems. 5. First law of thermodynamics Internal energy. Heat and Work. Enthalpy and reaction enthalpy. 6. Second law of thermodynamics Entropy. Change of entropy in chemical systems and universe. Reaction entropy. 7. Gibbs energy and chemical potential. Combination of laws of thermodynamics. Gibbs energy and chemical reactions. Activities of gases, condensed substances and species in solution. Equilibrium constant. 8. Chemical equilibrium Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium. 9. Acids and bases Properties of acids and bases. Dissociation of acids and bases. pH and the calculation of pH-values in acid-base systems. Acid-base diagrams. Buffers. Polyprotic acids and bases. 10. Dissolution and precipitation. Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium. | ||||
Lecture notes | Online-Skript mit durchgerechneten Beispielen. | ||||
Literature | Charles E. Mortimer, CHEMIE - DAS BASISWISSEN DER CHEMIE. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten, CHEMIE. 10. Auflage, Pearson Studium, 2011. (deutsch) Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch) |