Name | Frau Prof. Dr. Ana Cannas da Silva |
Adresse | Dep. Mathematik ETH Zürich, HG G 27.4 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 85 90 |
ana.cannas@math.ethz.ch | |
URL | http://www.math.ethz.ch/~acannas |
Departement | Mathematik |
Beziehung | Titularprofessorin |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-0252-00L | Mathematik II: Analysis II | 7 KP | 5V + 2U | A. Cannas da Silva | |
Kurzbeschreibung | Fortführung der Themen von Mathematik I. Schwergewicht: mehrdimensionale Differential- und Integralrechung und partielle Differentialgleichungen. | ||||
Lernziel | Mathematik ist von immer grösserer Bedeutung in den Natur- und Ingenieurwissenschaften. Grund dafür ist das folgende Konzept zur Lösung konkreter Probleme: Der entsprechende Ausschnitt der Wirklichkeit wird in der Sprache der Mathematik modelliert; im mathematischen Modell wird das Problem - oft unter Anwendung von äusserst effizienter Software - gelöst und das Resultat in die Realität zurück übersetzt. Ziel der Vorlesungen Mathematik I und II ist es, die einschlägigen mathematischen Grundlagen bereit zu stellen. Differentialgleichungen sind das weitaus wichtigste Hilfsmittel im Prozess des Modellierens und stehen deshalb im Zentrum beider Vorlesungen. | ||||
Inhalt | - Mehrdimensionale Differentialrechnung: Funktionen von mehreren Variablen, partielle Ableitungen, Kurven und Flächen im Raum, Skalar- und Vektorfelder, Gradient, Rotation und Divergenz. - Mehrdimensionale Integralrechnung: Mehrfachintegrale, Linien- und Oberflächenintegrale, Arbeit und Fluss, Integralsätze von Gauss und Stokes, Anwendungen. - Partielle Differentialgleichungen: Trennung der Variablen, Fourier-Reihen, Wärmeleitungs-, Wellen- und Potential-Gleichung, Fourier-Transformation. | ||||
Skript | Siehe Literatur | ||||
Literatur | - Thomas, G. B., M.D. Weir und J. Hass: Analysis 2, Pearson. - Hungerbühler, N.: Einführung in partielle Differentialgleichungen, vdf. - Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg, Bd. 2 und 3 - Sperb, R.: Analysis II, vdf. | ||||
Voraussetzungen / Besonderes | Mathe-Lab (Präsenzstunden): Mo 13-15 im Raum HIT H 42 (Hönggerberg) und Di 17-19 sowie Mi 17-19 im Raum HG E 41. | ||||
401-3530-19L | Seminar on Symplectic Toric Manifolds Number of participants limited to 12 | 4 KP | 2S | A. Cannas da Silva | |
Kurzbeschreibung | This seminar is an introduction to symplectic toric manifolds, including their classification in terms of (unimodular) polytopes following Delzant and including normal forms for symplectic manifolds with torus actions. | ||||
Lernziel | |||||
Literatur | -- Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France, 116 (1988), 315-339. -- Karshon and Lerman, Non-compact symplectic toric manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), 37 pp. -- Lerman and Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), 4201-4230. -- Cannas da Silva, Symplectic toric manifolds, Symplectic Geometry of Integrable Hamiltonian Systems by Audin, Cannas da Silva and Lerman, CRM (2003), 85-173. | ||||
Voraussetzungen / Besonderes | This seminar requires some prior basic knowledge of symplectic manifolds. | ||||
401-5580-00L | Symplectic Geometry Seminar | 0 KP | 2K | P. Biran, A. Cannas da Silva | |
Kurzbeschreibung | Forschungskolloquium | ||||
Lernziel | |||||
406-0251-AAL | Mathematics I Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 6 KP | 13R | A. Cannas da Silva | |
Kurzbeschreibung | This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. | ||||
Lernziel | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | ||||
Inhalt | 1. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 2. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, fundamental theorem of calculus, antiderivative, integration methods, improper integrals. 3. Ordinary Differential Equations: variation of parameters, separable equations, integration by substitution, systems of linear equations with constant coefficients, 1st and higher order equations, introduction to dynamical systems. | ||||
Literatur | - Bretscher, O.: Linear Algebra with Applications, Pearson Prentice Hall. - Thomas, G. B.: Thomas' Calculus, Part 1, Pearson Addison-Wesley. | ||||
406-0252-AAL | Mathematics II Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 7 KP | 15R | A. Cannas da Silva | |
Kurzbeschreibung | Continuation of the topics of Mathematics I. Main focus: multivariable calculus and partial differential equations. | ||||
Lernziel | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | ||||
Inhalt | - Multivariable Differential Calculus: functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence. - Multivariable Integral Calculus: multiple integrals, line and surface integrals, work and flow, Gauss and Stokes theorems, applications. - Partial Differential Equations: separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform. | ||||
Literatur | - Thomas, G. B.: Thomas' Calculus, Part 2, Pearson Addison-Wesley. - Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons. | ||||
406-0253-AAL | Mathematics I & II Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 13 KP | 28R | A. Cannas da Silva | |
Kurzbeschreibung | Mathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. Main focus of Mathematics II: multivariable calculus and partial differential equations. | ||||
Lernziel | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | ||||
Inhalt | 1. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 2. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, fundamental theorem of calculus, antiderivative, integration methods, improper integrals. 3. Ordinary Differential Equations: variation of parameters, separable equations, integration by substitution, systems of linear equations with constant coefficients, 1st and higher order equations, introduction to dynamical systems. 4. Multivariable Differential Calculus: functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence. 5. Multivariable Integral Calculus: multiple integrals, line and surface integrals, work and flow, Gauss and Stokes theorems, applications. 6. Partial Differential Equations: separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform. | ||||
Literatur | - Bretscher, O.: Linear Algebra with Applications, Pearson Prentice Hall. - Thomas, G. B.: Thomas' Calculus, Part 1, Pearson Addison-Wesley. - Thomas, G. B.: Thomas' Calculus, Part 2, Pearson Addison-Wesley. - Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons. |