Steven Johnson: Catalogue data in Spring Semester 2017

Name Prof. Dr. Steven Johnson
Institut für Quantenelektronik
ETH Zürich, HPT D 15
Auguste-Piccard-Hof 1
8093 Zürich
Telephone+41 44 633 76 31
Fax+41 44 633 10 54
RelationshipFull Professor

402-0101-00LThe Zurich Physics Colloquium Information 0 credits1KR. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, M. Carollo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg
AbstractResearch colloquium
Prerequisites / NoticeOccasionally, talks may be delivered in German.
402-0275-00LQuantum Electronics10 credits3V + 2US. Johnson
AbstractClassical and semi-classical introduction to Quantum Electronics. Mandatory for further elective courses in Quantum Electronics. The field of Quantum Electronics describes propagation of light and its interaction with matter. The emphasis is set on linear pulse and beam propagation in dispersive media, optical anisotropic materials, and waveguides and lasers.
ObjectiveTeach the fundamental building blocks of Quantum Electronics. After taking this course students will be able to describe light propagation in dispersive and nonlinear media, as well as the operation of polarization optics and lasers.
ContentPropagation of light in dispersive media
Light propagation through interfaces
Interference and coherence
Fourier Optics
Beam propagation
Optical resonators
Laser fundamentals
Polarization optics
Nonlinear optics
Lecture notesScripts will be distributed in class (online) via moodle
Saleh, B.E.A., Teich, M.C.; Fundamentals of Photonics, John Wiley & Sons, Inc., newest edition
Prerequisites / NoticeMandatory lecture for physics students

Prerequisites (minimal): vector analysis, differential equations, Fourier transformation
402-0528-12LUltrafast Methods in Solid State Physics6 credits2V + 1UY. M. Acremann, S. Johnson
AbstractThis course provides an overview of experimental methods and techniques used to study dynamical processes in solids. Many processes in solids happen on a picosecond to femtosecond time scale. In this course we discuss different methods to generate femtosecond photon pulses and measurement techniques adapted to time resolved experiments.
ObjectiveThe goal of the course is to enable students to identify and evaluate experimental methods to manipulate and measure the electronic, magnetic and structural properties of solids on the fastest possible time scales. These "ultrafast methods" potentially lead both to an improved understanding of fundamental interactions in condensed matter and to applications in data storage, materials processing and computing.
ContentThe topical course outline is as follows:

0. Introduction
Time scales in solids and technology
Time vs. frequency domain experiments
Pump-Probe technique

1. Ultrafast processes in solids, an overview
Electron gas
Spin system

2. Ultrafast optical-frequency methods
Ultrafast laser sources
Broadband techniques
Harmonic generation, optical parametric amplification
Advanced pump-probe techniques

3. THz-frequency methods
Mid-IR and THz interactions with solids
Difference frequency mixing
Optical rectification

4. Ultrafast VUV and x-ray frequency methods
Synchrotron based sources
Free electron lasers
Higher harmonic generation based sources
X-ray diffraction
Time resolved X-ray microscopy
Coherent imaging

5. Electron spectroscopy in the time domain
Lecture notesWill be distributed.
LiteratureWill be distributed.
Prerequisites / NoticeAlthough the course "Ultrafast Processes in Solids" (402-0526-00L) is useful as a companion to this course, it is not a prerequisite.