## Steven Johnson: Catalogue data in Autumn Semester 2018 |

Name | Prof. Dr. Steven Johnson |

Field | Physics |

Address | Institut für Quantenelektronik ETH Zürich, HPT D 15 Auguste-Piccard-Hof 1 8093 Zürich SWITZERLAND |

Telephone | +41 44 633 76 31 |

Fax | +41 44 633 10 54 |

johnsons@ethz.ch | |

URL | https://udg.ethz.ch |

Department | Physics |

Relationship | Full Professor |

Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|

402-0101-00L | The Zurich Physics Colloquium | 0 credits | 1K | R. Renner, G. Aeppli, C. Anastasiou, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg | |

Abstract | Research colloquium | ||||

Objective | |||||

402-0402-00L | Ultrafast Laser Physics | 10 credits | 3V + 2U | L. P. Gallmann, S. Johnson, U. Keller | |

Abstract | Introduction to ultrafast laser physics with an outlook into cutting edge research topics such as attosecond science and coherent ultrafast sources from THz to X-rays. | ||||

Objective | Understanding of basic physics and technology for pursuing research in ultrafast laser science. How are ultrashort laser pulses generated, how do they interact with matter, how can we measure these shortest man-made events and how can we use them to time-resolve ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications. | ||||

Content | The lecture covers the following topics: a) Linear pulse propagation: mathematical description of pulses and their propagation in linear optical systems, effect of dispersion on ultrashort pulses, concepts of pulse carrier and envelope, time-bandwidth product b) Dispersion compensation: technologies for controlling dispersion, pulse shaping, measurement of dispersion c) Nonlinear pulse propagation: intensity-dependent refractive index (Kerr effect), self-phase modulation, nonlinear pulse compression, self-focusing, filamentation, nonlinear Schrödinger equation, solitons, non-instantaneous nonlinear effects (Raman/Brillouin), self-steepening, saturable gain and absorption d) Second-order nonlinearities with ultrashort pulses: phase-matching with short pulses and real beams, quasi-phase matching, second-harmonic and sum-frequency generation, parametric amplification and generation e) Relaxation oscillations: dynamical behavior of rate equations after perturbation f) Q-switching: active Q-switching and its theory based on rate equations, active Q-switching technologies, passive Q-switching and theory g) Active modelocking: introduction to modelocking, frequency comb versus axial modes, theory for various regimes of laser operation, Haus master equation formalism h) Passive modelocking: slow, fast and ideally fast saturable absorbers, semiconductor saturable absorber mirror (SESAM), designs of and materials for SESAMs, modelocking with slow absorber and dynamic gain saturation, modelocking with ideally fast saturable absorber, Kerr-lens modelocking, soliton modelocking, Q-switching instabilities in modelocked lasers, inverse saturable absorption i) Pulse duration measurements: rf cables and electronics, fast photodiodes, linear system theory for microwave test systems, intensity and interferometric autocorrelations and their limitations, frequency-resolved optical gating, spectral phase interferometry for direct electric-field reconstruction and more j) Noise: microwave spectrum analyzer as laser diagnostics, amplitude noise and timing jitter of ultrafast lasers, lock-in detection k) Ultrafast measurements: pump-probe scheme, transient absorption/differential transmission spectroscopy, four-wave mixing, optical gating and more l) Frequency combs and carrier-envelope offset phase: measurement and stabilization of carrier-envelope offset phase (CEP), time and frequency domain applications of CEP-stabilized sources m) High-harmonic generation and attosecond science: non-perturbative nonlinear optics / strong-field phenomena, high-harmonic generation (HHG), phase-matching in HHG, attosecond pulse generation, attosecond technology: detectors and diagnostics, attosecond metrology (streaking, RABBITT, transient absorption, attoclock), example experiments n) Ultrafast THz science: generation and detection, physics in THz domain, weak-field and strong-field applications o) Brief introduction to other hot topics: relativistic and ultra-high intensity ultrafast science, ultrafast electron sources, free-electron lasers, etc. | ||||

Lecture notes | Class notes will be made available. | ||||

Prerequisites / Notice | Prerequisites: Basic knowledge of quantum electronics (e. g., 402-0275-00L Quantenelektronik). | ||||

402-2883-00L | Physics III | 7 credits | 4V + 2U | S. Johnson | |

Abstract | Introductory course on quantum and atomic physics including optics and statistical physics. | ||||

Objective | A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations. | ||||

Content | Evidence for Quantum Mechanics: atoms, photons, photo-electric effect, Rutherford scattering, Compton scattering, de-Broglie waves. Quantum mechanics: wavefunctions, operators, Schrodinger's equation, infinite and finite square well potentials, harmonic oscillator, hydrogen atoms, spin. Atomic structure: Perturbation to basic structure, including Zeeman effect, spin-orbit coupling, many-electron atoms. X-ray spectra, optical selection rules, emission and absorption of radiation, including lasers. Optics: Fermat's principle, lenses, imaging systems, diffraction, interference, relation between geometrical and wave descriptions, interferometers, spectrometers. Statistical mechanics: probability distributions, micro and macrostates, Boltzmann distribution, ensembles, equipartition theorem, blackbody spectrum, including Planck distribution | ||||

Lecture notes | Lecture notes will be provided electronically during the course. | ||||

Literature | Quantum mechanics/Atomic physics/Molecules: "The Physics of Atoms and Quanta", H. Hakan and H. C. Wolf, ISBN 978-3-642-05871-4 Optics: "Optics", E. Hecht, ISBN 0-321-18878-0 Statistical mechanics: "Statistical Physics", F. Mandl 0-471-91532-7 |