Steven Johnson: Catalogue data in Spring Semester 2018 |
Name | Prof. Dr. Steven Johnson |
Field | Physics |
Address | Institut für Quantenelektronik ETH Zürich, HPT D 15 Auguste-Piccard-Hof 1 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 76 31 |
Fax | +41 44 633 10 54 |
johnsons@ethz.ch | |
URL | https://udg.ethz.ch |
Department | Physics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
402-0101-00L | The Zurich Physics Colloquium | 0 credits | 1K | R. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg | |
Abstract | Research colloquium | ||||
Learning objective | |||||
Prerequisites / Notice | Occasionally, talks may be delivered in German. | ||||
402-0528-12L | Ultrafast Methods in Solid State Physics | 6 credits | 2V + 1U | Y. M. Acremann, S. Johnson | |
Abstract | This course provides an overview of experimental methods and techniques used to study dynamical processes in solids. Many processes in solids happen on a picosecond to femtosecond time scale. In this course we discuss different methods to generate femtosecond photon pulses and measurement techniques adapted to time resolved experiments. | ||||
Learning objective | The goal of the course is to enable students to identify and evaluate experimental methods to manipulate and measure the electronic, magnetic and structural properties of solids on the fastest possible time scales. These "ultrafast methods" potentially lead both to an improved understanding of fundamental interactions in condensed matter and to applications in data storage, materials processing and computing. | ||||
Content | The topical course outline is as follows: 0. Introduction Time scales in solids and technology Time vs. frequency domain experiments Pump-Probe technique 1. Ultrafast processes in solids, an overview Electron gas Lattice Spin system 2. Ultrafast optical-frequency methods Ultrafast laser sources Broadband techniques Harmonic generation, optical parametric amplification Fluorescence Advanced pump-probe techniques 3. THz-frequency methods Mid-IR and THz interactions with solids Difference frequency mixing Optical rectification 4. Ultrafast VUV and x-ray frequency methods Synchrotron based sources Free electron lasers Higher harmonic generation based sources X-ray diffraction Time resolved X-ray microscopy Coherent imaging 5. Electron spectroscopy in the time domain | ||||
Lecture notes | Will be distributed. | ||||
Literature | Will be distributed. | ||||
Prerequisites / Notice | Although the course "Ultrafast Processes in Solids" (402-0526-00L) is useful as a companion to this course, it is not a prerequisite. | ||||
406-0023-AAL | Physics Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 7 credits | 15R | S. Johnson | |
Abstract | Basic topics in classical as well as modern physics, interplay between basic research and applications. | ||||
Learning objective | |||||
Content | Electrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity | ||||
Literature | P.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York Hans J. Paus, Physik in Experimenten und Beispielen, Carl Hanser Verlag München Wien (als unterrichtsbegleitendes und ergänzendes Lehrbuch) |