Steven Johnson: Catalogue data in Autumn Semester 2017

Name Prof. Dr. Steven Johnson
FieldPhysics
Address
Institut für Quantenelektronik
ETH Zürich, HPT D 15
Auguste-Piccard-Hof 1
8093 Zürich
SWITZERLAND
Telephone+41 44 633 76 31
Fax+41 44 633 10 54
E-mailjohnsons@ethz.ch
URLhttps://udg.ethz.ch
DepartmentPhysics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
402-0023-01LPhysics7 credits5V + 2US. Johnson
AbstractThis course will cover the basic topics in Physics and will show/display/explain with a variety of experiments the most important physical effects. The course will address classical as well as modern physics, and the interplay between basic research and applications.
Learning objectiveDer Physikunterricht will die Grundgesetze der Physik verständlich machen, den Zusammenhang zwischen Grundlagenforschung und Anwendungen aufzeigen, das selbständige Denken im naturwissenschaftlich-technischen Bereich fördern und darüber hinaus etwas von der Faszination der klassischen und modernen Physik vermitteln. Dieses Ziel soll durch Vorlesungen mit Demonstrationsexperimenten und Übungen erreicht werden.
ContentElektromagnetismus: Elektrostatik und Magnetostatik, Strom, Spannung und Widerstand, Maxwell-Gleichungen, elektromagnetische Wellen, elektromagnetische Induktion, elektromagnetische Eigenschaften der Materie.
Thermodynamik: Temperatur und Wärme, Zustandsgleichungen, erster und zweiter Hauptsatz der Wärmelehre, Entropie, Transportvorgänge.
Quantenphysik und Atomphysik.
Schwingungen und Wellen.
Grundlagen der speziellen Relativitätstheorie.
Lecture notesManuskript und Übungsblätter
LiteratureHans J. Paus, Physik in Experimenten und Beispielen, Carl Hanser Verlag München Wien (als unterrichtsbegleitendes und ergänzendes Lehrbuch)
402-0101-00LThe Zurich Physics Colloquium Information 0 credits1KR. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, T. K. Gehrmann, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg
AbstractResearch colloquium
Learning objective
402-0402-00LUltrafast Laser Physics Information 10 credits3V + 2UL. Gallmann, S. Johnson, U. Keller
AbstractIntroduction to ultrafast laser physics with an outlook into cutting edge research topics such as attosecond science and coherent ultrafast sources from THz to X-rays.
Learning objectiveUnderstanding of basic physics and technology for pursuing research in ultrafast laser science. How are ultrashort laser pulses generated, how do they interact with matter, how can we measure these shortest man-made events and how can we use them to time-resolve ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications.
ContentThe lecture covers the following topics:

a) Linear pulse propagation: mathematical description of pulses and their propagation in linear optical systems, effect of dispersion on ultrashort pulses, concepts of pulse carrier and envelope, time-bandwidth product

b) Dispersion compensation: technologies for controlling dispersion, pulse shaping, measurement of dispersion

c) Nonlinear pulse propagation: intensity-dependent refractive index (Kerr effect), self-phase modulation, nonlinear pulse compression, self-focusing, filamentation, nonlinear Schrödinger equation, solitons, non-instantaneous nonlinear effects (Raman/Brillouin), self-steepening, saturable gain and absorption

d) Second-order nonlinearities with ultrashort pulses: phase-matching with short pulses and real beams, quasi-phase matching, second-harmonic and sum-frequency generation, parametric amplification and generation

e) Relaxation oscillations: dynamical behavior of rate equations after perturbation

f) Q-switching: active Q-switching and its theory based on rate equations, active Q-switching technologies, passive Q-switching and theory

g) Active modelocking: introduction to modelocking, frequency comb versus axial modes, theory for various regimes of laser operation, Haus master equation formalism

h) Passive modelocking: slow, fast and ideally fast saturable absorbers, semiconductor saturable absorber mirror (SESAM), designs of and materials for SESAMs, modelocking with slow absorber and dynamic gain saturation, modelocking with ideally fast saturable absorber, Kerr-lens modelocking, soliton modelocking, Q-switching instabilities in modelocked lasers, inverse saturable absorption

i) Pulse duration measurements: rf cables and electronics, fast photodiodes, linear system theory for microwave test systems, intensity and interferometric autocorrelations and their limitations, frequency-resolved optical gating, spectral phase interferometry for direct electric-field reconstruction and more

j) Noise: microwave spectrum analyzer as laser diagnostics, amplitude noise and timing jitter of ultrafast lasers, lock-in detection

k) Ultrafast measurements: pump-probe scheme, transient absorption/differential transmission spectroscopy, four-wave mixing, optical gating and more

l) Frequency combs and carrier-envelope offset phase: measurement and stabilization of carrier-envelope offset phase (CEP), time and frequency domain applications of CEP-stabilized sources

m) High-harmonic generation and attosecond science: non-perturbative nonlinear optics / strong-field phenomena, high-harmonic generation (HHG), phase-matching in HHG, attosecond pulse generation, attosecond technology: detectors and diagnostics, attosecond metrology (streaking, RABBITT, transient absorption, attoclock), example experiments

n) Ultrafast THz science: generation and detection, physics in THz domain, weak-field and strong-field applications

o) Brief introduction to other hot topics: relativistic and ultra-high intensity ultrafast science, ultrafast electron sources, free-electron lasers, etc.
Lecture notesClass notes will be made available.
Prerequisites / NoticePrerequisites: Basic knowledge of quantum electronics (e. g., 402-0275-00L Quantenelektronik).
406-0023-AALPhysics Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
7 credits15RS. Johnson
AbstractBasic topics in classical as well as modern physics, interplay between basic research and applications.
Learning objective
ContentElectrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity
LiteratureP.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York

Hans J. Paus, Physik in Experimenten und Beispielen, Carl Hanser Verlag München Wien (als unterrichtsbegleitendes und ergänzendes Lehrbuch)