Niklas Beisert: Katalogdaten im Herbstsemester 2023 |
Name | Herr Prof. Dr. Niklas Beisert |
Lehrgebiet | Mathematische Physik |
Adresse | Institut für Theoretische Physik ETH Zürich, HIT K 31.8 Wolfgang-Pauli-Str. 27 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 78 29 |
nbeisert@itp.phys.ethz.ch | |
URL | http://people.phys.ethz.ch/~nbeisert |
Departement | Physik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
402-0180-00L | Ethics and Scientific Integrity for Doctoral Students in Physics | 1 KP | 2G | N. Beisert, V. Bondar, M. Christl | |||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course sensitises doctoral students to ethical issues that may occur during their doctorate. After an introduction to ethics and good scientific practice, students are familiarised with resources that can assist them with ethical decision-making. Students get the chance to apply their knowledge in a context specific to research in physics. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Doctoral students learn how to identify, analyse and address ethical issues in their own scientific research. In addition, they will reflect on their professional role as scientific researchers. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Part I: A self-paced e-learning course in Moodle consisting of several modules on the foundations of ethics in research: - introduction to moral theory - introduction to ethical issues that occur within scientific research (authorship, cooperation, data use and sharing as well as other aspects that are subject to scientific integrity and good scientific practice). - collecting resources: presentation of a variety of tools and resources that help identify ethical issues - setting up a strategy: example examination of a case regarding its ethical scope - making decisions: presentation of different ways of addressing ethical issues by making hard choices, solving ethical dilemmas and seeking advice. Part II: Two face-to-face workshops focus on applications and physics-specific aspects providing an interactive learning environment. Participants get to apply their knowledge, and they are encouraged to reflect on ethical problems and to critically discuss them with fellow doctoral students. The workshops consist of several modules on: - ethics introduction - dilemma discussions - case analyses - group work and discussions - role plays - sustainability aspects - dialogues with supervisor | ||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | For doctoral students of D-PHYS only. | ||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||||||||
402-0822-13L | Introduction to Integrability | 6 KP | 2V + 1U | N. Beisert | |||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course gives an introduction to the theory of integrable systems, related symmetry algebras and efficients calculational methods. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Integrable systems are a special class of physical models that can be solved exactly due to an exceptionally large number of symmetries. Examples of integrable models appear in many different areas of physics including classical mechanics, condensed matter, 2d quantum field theories and lately in string- and gauge theories. They offer a unique opportunity to gain a deeper understanding of generic phenomena in a simplified, exactly solvable setting. In this course we introduce the notion and formulation of integrability in classical and quantum mechanics. We discuss various efficient methods for constructing solutions and eigenstates in these models. Finally, we elaborate on the enhanced symmetries that underly integrable models. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | • Classical Integrability • Algebraic Methods for Integrability • Classical Spin Chains • Spectral Curves and Inverse Scattering • Quantum Spin Chains • Bethe Ansatz • Classical and Quantum Algebra | ||||||||||||||||||||||||||||||||||||||||||||
Literatur | • V. Chari, A. Pressley, "A Guide to Quantum Groups", Cambridge University Press (1995) • O. Babelon, D. Bernard, M. Talon, "Introduction to Classical Integrable Systems", Cambridge University Press (2003) • N. Reshetikhin, "Lectures on the integrability of the 6-vertex model", http://arxiv.org/abs/1010.5031 • L.D. Faddeev, "How Algebraic Bethe Ansatz Works for Integrable Model", http://arxiv.org/abs/hep-th/9605187 * D. Bernard, "An Introduction to Yangian Symmetries", Int. J. Mod. Phys. B7, 3517-3530 (1993), http://arxiv.org/abs/hep-th/9211133 * V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, "Quantum Inverse Scattering Method and Correlation Functions", Cambridge University Press (1997) • C. Gómez, M. Ruiz-Altaba, G. Sierra, "Quantum Groups In Two-Dimensional Physics", Cambridge University Press (1996) • L. D. Faddeev, L. A. Takhtajan, "Hamiltonian Methods in the Theory of Solitons", Springer (2007) • Lecture of FS22: https://moodle-app2.let.ethz.ch/course/view.php?id=16543 | ||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|