Niklas Beisert: Katalogdaten im Frühjahrssemester 2018 |
Name | Herr Prof. Dr. Niklas Beisert |
Lehrgebiet | Mathematische Physik |
Adresse | Institut für Theoretische Physik ETH Zürich, HIT K 31.8 Wolfgang-Pauli-Str. 27 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 78 29 |
nbeisert@itp.phys.ethz.ch | |
URL | http://people.phys.ethz.ch/~nbeisert |
Departement | Physik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
402-0101-00L | The Zurich Physics Colloquium | 0 KP | 1K | R. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | Occasionally, talks may be delivered in German. | ||||
402-0800-00L | The Zurich Theoretical Physics Colloquium | 0 KP | 1K | O. Zilberberg, C. Anastasiou, N. Beisert, G. Blatter, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, S. Huber, P. Jetzer, L. M. Mayer, B. Moore, R. Renner, T. C. Schulthess, M. Sigrist, Uni-Dozierende | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | Vorträge evtl. auch auf Deutsch | ||||
402-0883-18L | Exercises in Symmetries in Physics | 2 KP | 1G | N. Beisert | |
Kurzbeschreibung | The course supplements an introductory lecture to symmetry groups in physics. It practices and deepens the mathematical background and applications in physics by working out and discussing homework exercises. Quiz problems in class will test familiarity with conceptual questions. Particular issues of the lecture can be discussed in more detail. | ||||
Lernziel | The aim of the course is to obtain a solid foundation in techniques for and concepts of finite group theory and Lie theory. Participants will practice performing computations and derivations in this topic and learn to apply the relevant methods to physics problems. | ||||
Inhalt | symmetries in two and three dimensions, groups and representations, finite group theory, point and space groups, structure of simple Lie algebras, finite-dimensional representations; advanced topics such as: representations of SU(N), classification of simple Lie algebras, conformal symmetry | ||||
Voraussetzungen / Besonderes | This course is based on the contents of the lecture 402-0883-63V Symmetries in Physics which should be attended in parallel | ||||
402-0883-63L | Symmetries in Physics | 4 KP | 2V | N. Beisert | |
Kurzbeschreibung | The course gives an introduction to symmetry groups in physics. It explains the relevant mathematical background (finite groups, Lie groups and algebras as well as their representations), and illustrates their important role in modern physics. | ||||
Lernziel | The aim of the course is to give a self-contained introduction into finite group theory as well as Lie theory from a physicists point of view. Abstract mathematical constructions will be illustrated with examples from physics. | ||||
Inhalt | symmetries in two and three dimensions, groups and representations, finite group theory, point and space groups, structure of simple Lie algebras, finite-dimensional representations; advanced topics such as: representations of SU(N), classification of simple Lie algebras, conformal symmetry |