Maksym Kovalenko: Katalogdaten im Frühjahrssemester 2020 |
Name | Herr Prof. Dr. Maksym Kovalenko |
Lehrgebiet | Anorganische Funktionsmaterialien |
Adresse | Lab. für Anorganische Chemie ETH Zürich, HCI H 139 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 41 56 |
mvkovalenko@ethz.ch | |
Departement | Chemie und Angewandte Biowissenschaften |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
529-0122-00L | Inorganic Chemistry II | 3 KP | 3G | M. Kovalenko, K. Kravchyk | |
Kurzbeschreibung | The lecture is based on Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers, i.e. crystal structures. | ||||
Lernziel | The lecture follows Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers. | ||||
Inhalt | Symmetry aspects of chemical bonding, point groups and representations for the deduction of molecular orbitals, energy assessment for molecules and solids, Sanderson formalism, derivation and understanding of band structures, densities of states, overlap populations, crystal symmetry, basic crystal structures and corresponding properties, visual representations of crystal structures. | ||||
Skript | see Moodle | ||||
Literatur | 1. I. Hargittai, M. Hargittai, "Symmetry through the Eyes of a Chemist", Plenum Press, 1995; 2. R. Hoffmann, "Solids and Surfaces", VCH 1988; 3. U. Müller, "Anorganische Strukturchemie", 6. Auflage, Vieweg + Teubner 2008 | ||||
Voraussetzungen / Besonderes | Requirements: Inorganic Chemistry I | ||||
529-0134-00L | Functional Inorganics Only for Chemistry MSc, Programme Regulations 2005. | 7 KP | 3G | M. Kovalenko, K. Kravchyk, T. Lippert, G. Raino | |
Kurzbeschreibung | This course covers the synthesis, properties and applications of inorganic materials. In particular, the focus is on photo-active coordination compounds, quasicrystals, nanocrystals (including nanowires), molecular precursors for inorganic materials and metal-organic frameworks. | ||||
Lernziel | Understanding the structure-property relationship and the design principles of modern inorganic materials for prospective applications in photovoltaics, electrochemical energy storage (e.g. Li-ion batteries), thermoelectrics and photochemical and photoelectrochemical water splitting. | ||||
Inhalt | (A) Introduction into the synthesis and atomic structure of modern molecular and crystalline inorganic materials. -Quasicrystals -Nanocrystals, including shape engineering -Molecular precursors (including organometallic and coordination compounds) for inorganic materials -Metal-organic frameworks -Photoactive molecules (B) Applications of inorganic materials: -photovoltaics -Li-ion batteries -Thermoelectrics -Photochemical and photoelectrochemical water splitting -Light-emitting devices etc. | ||||
Skript | will be distributed during lectures | ||||
Literatur | will be suggested in the lecture notes | ||||
Voraussetzungen / Besonderes | No special knowledge beyond undergraduate curriculum | ||||
529-0134-01L | Functional Inorganics | 6 KP | 3G | M. Kovalenko, K. Kravchyk, T. Lippert, G. Raino | |
Kurzbeschreibung | This course covers the synthesis, properties and applications of inorganic materials. In particular, the focus is on photo-active coordination compounds, quasicrystals, nanocrystals (including nanowires), molecular precursors for inorganic materials and metal-organic frameworks. | ||||
Lernziel | Understanding the structure-property relationship and the design principles of modern inorganic materials for prospective applications in photovoltaics, electrochemical energy storage (e.g. Li-ion batteries), thermoelectrics and photochemical and photoelectrochemical water splitting. | ||||
Inhalt | (A) Introduction into the synthesis and atomic structure of modern molecular and crystalline inorganic materials. -Quasicrystals -Nanocrystals, including shape engineering -Molecular precursors (including organometallic and coordination compounds) for inorganic materials -Metal-organic frameworks -Photoactive molecules (B) Applications of inorganic materials: -photovoltaics -Li-ion batteries -Thermoelectrics -Photochemical and photoelectrochemical water splitting -Light-emitting devices etc. | ||||
Skript | will be distributed during lectures | ||||
Literatur | will be suggested in the lecture notes | ||||
Voraussetzungen / Besonderes | No special knowledge beyond undergraduate curriculum | ||||
529-0199-00L | Inorganic and Organometallic Chemistry | 0 KP | 2K | H. Grützmacher, C. Copéret, D. Günther, M. Kovalenko, A. Mezzetti, A. Togni | |
Kurzbeschreibung | |||||
Lernziel | |||||
529-0948-00L | Solid State Chemistry Findet dieses Semester nicht statt. Belegung nur möglich bis zum 27.01.2020 mit Bevorzugung von Teilnehmern, welche die Vorlesung «Inorganic Chemistry II» besucht haben. Andere Anmelder können nur bei unbelegten Plätzen berücksichtigt werden (Anzahl der Teilnehmer auf 20 pro Jahr limitiert!). Elektronische Einschreibung obligatorisch (Ausgenommen ETH-externe Teilnehmer). | 3 KP | 6P | M. Kovalenko | |
Kurzbeschreibung | An introduction to crystal growth with the Bridgman-Stockbarger technique and physical characterization of single crystals. | ||||
Lernziel | The practical laboratory course gives an insight into the growth of single crystals and their applications. Focus lies on the growth of semiconductor crystals and the measurement of their physical (optical & electronic) properties. The complete work is documented in a detailed scientific report. | ||||
Inhalt | The growth of perovskite (CsPbBr3) semiconductor crystals using the Bridgman-Stockbarger technique as a model system for single crystals grown from the melt. The preparation of crystals for physical measurements through cutting and polishing. Measuring optical characteristics (absorption) as well as electronic properties, including current-voltage (IV) measurements, time-of-flight, charge carrier recombination, charge extraction efficiencies, and photodetection. | ||||
Skript | Electronic version of the script will be provided. |