Bozidar Stojadinovic: Catalogue data in Spring Semester 2023

Name Prof. Dr. Bozidar Stojadinovic
Name variantsBozidar Stojadinovic
B. Stojadinović
Božidar Stojadinović
FieldStructural Dynamics and Earthquake Engineering
Inst. f. Baustatik u. Konstruktion
ETH Zürich, HIL E 14.1
Stefano-Franscini-Platz 5
8093 Zürich
Telephone+41 44 633 70 99
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipFull Professor

101-0188-00LSeismic Design of Structures I3 credits2GB. Stojadinovic
AbstractThe following topics are covered: 1) origin and quantification of earthquake hazard; 2) seismic response of elastic and inelastic structures; 3) response history and response spectrum seismic evaluation methods; 4) basis for seismic design codes; and 5) fundamentals of seismic design of structures. These topics are discussed in framework of performance-based seismic design.
ObjectiveAfter successfully completing this course the students will be able to:
1. Explain the nature of earthquake hazard and risk.
2. Explain the seismic response of simple linear and nonlinear single- and multi-degree-of-freedom structural systems and quantify it using response time history and response spectrum approaches.
3. Apply design code provisions to size the structural elements in a lateral force resisting system of a typical frame and wall buildings.
ContentThis course initiates the series of two courses on seismic design of structures at ETH. Building on the material covered in the course on Structural Dynamics and Vibration Problems, the following fundamental topics are covered in this course: 1) origin and quantification of earthquake hazard; 2) seismic response of elastic and inelastic single- and multiple-degree-of-freedom structures; 3) response history and response spectrum seismic response evaluation methods; 4) basis for seismic design codes; and 5) fundamentals of seismic design of structures. These topics are discussed in framework of performance-based seismic design.
Lecture notesElectronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions.
Literature1. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 5th edition, Anil Chopra, Prentice Hall, 2017
2. Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004
3. Erdbebensicherung von Bauwerken, 2nd edition, Hugo Bachmann, Birkhäuser, Basel, 2002
Prerequisites / NoticeETH Structural Dynamics and Vibration Problems course, or equivalent. Students are expected to be able to compute the response of elastic single- and multiple-degree-of-freedom structural systems in free vibration, as well as in forced vibration under harmonic and pulse excitation, to use the response spectrum method, and to understand and be able to apply the modal response analysis method for multiple-degree-of-freedom structures. Knowledge of structural analysis and design of reinforced concrete or steel structures under static loads is expected. Familiarity with general-purpose numerical analysis software, such as Matlab, and structural analysis software, such as Cubus, Sofistik or SAP2000, is desirable.
101-1187-00LColloquium Structural Engineering0 credits1KA. Taras, E. Chatzi, A. Frangi, W. Kaufmann, B. Stojadinovic, B. Sudret, M. Vassiliou
AbstractProfessors from national and international universities, technical experts from private industry as well as research associates of the Institute of Structural Engineering (IBK) are invited to present recent research results and specific projects. The colloquium is addressed to students, academics as well as practicing engineers.
ObjectiveBecome acquainted with recent research results in structural engineering.
364-1058-00LRisk Center Seminar Series0 credits2SH. Schernberg, D. Basin, A. Bommier, D. N. Bresch, S. Brusoni, L.‑E. Cederman, P. Cheridito, F. Corman, H. Gersbach, C. Hölscher, K. Paterson, G. Sansavini, B. Stojadinovic, B. Sudret, J. Teichmann, R. Wattenhofer, U. A. Weidmann, S. Wiemer, R. Zenklusen
AbstractIn this series of seminars, invited speakers discuss various topics in the area of risk modelling, governance of complex socio-economic systems, managing risks and crises, and building resilience. Students, PhD students, post-docs, faculty and individuals outside ETH are welcome.
ObjectiveParticipants gain insights in a broad range of risk- and resilience-related topics. They expand their knowledge of the field and deepen their understanding of the complexity of our social, economic and engineered systems. For young researchers in particular, the seminars offer an opportunity to learn academic presentation skills and to network with an interdisciplinary scientific audience.
ContentAcademic presentations from ETH faculty as well as external researchers.
Each seminar is followed by a Q&A session and (when permitted) a networking Apéro.
Lecture notesThe sessions are recorded whenever possible and posted on the ETH Risk Center webpage. If available, presentation slides are shared as well.
LiteratureEach speaker will provide a literature review.
Prerequisites / NoticeIn most cases, a quantitative background is required. Depending on the topic, field-specific knowledge may be required.
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesfostered
Media and Digital Technologiesfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered