Bozidar Stojadinovic: Catalogue data in Autumn Semester 2022 |
Name | Prof. Dr. Bozidar Stojadinovic |
Name variants | Bozidar Stojadinovic B. Stojadinović Božidar Stojadinović |
Field | Structural Dynamics and Earthquake Engineering |
Address | Inst. f. Baustatik u. Konstruktion ETH Zürich, HIL E 14.1 Stefano-Franscini-Platz 5 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 70 99 |
stojadinovic@ibk.baug.ethz.ch | |
URL | https://stojadinovic.ibk.ethz.ch/people-page/professor.html |
Department | Civil, Environmental and Geomatic Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0117-00L | Theory of Structures III | 3 credits | 2G | B. Stojadinovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After passing this course students will be able to: 1. Explain the equilibrium of continuous structural elements. 2. Formulate mechanical models of continuous prismatic structural elements. 3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements. 4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading. 5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Electronic copies of the learning material will be managed using Moodle. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. Lectures are streamed live and recorded on the ETH Video Portal. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Marti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014 Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Working knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0189-00L | Seismic Design of Structures II Number of participants limited to 18. All students go on a waiting list. Final registration based on an application letter (information given in the first lecture). Priority will be given to students who completed Seismic Design of Structures I (101-0188-00 G) and are in the primary target group (majoring in Structural Engineering and/or doing project-based coursework for other majors). | 4 credits | 2G | B. Stojadinovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In this course the students will learn how to do performance-based seismic design of building structures. This is a project-based course. The students will, in parallel, acquire the basis knowledge about the seismic behavior and non-linear response modeling of structures, and apply this knowledge in a project focused on design of a new building structure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After successfully completing this course, the students will be able to: 1. Model and explain the seismic behavior of new structures with moment frame, braced frame and shear wall structural systems. 2. Evaluate the performance of new structures under earthquake loading using modern risk-informed performance assessment methods and analysis tools. 3. Use the knowledge of nonlinear dynamic response of structures to interpret the design code provisions and apply it in seismic design of structural systems. 4. Successfully design such systems to achieve the performance objectives stipulated by the design codes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course completes the series of courses on dynamic analysis and seismic design of structures at ETHZ. Building on the material covered in Structural Dynamics and Seismic Design of Structures I, the following advanced topics will be covered in this course: 1) behavior and non-linear response modeling of structural systems under earthquake excitation; 2) displacement-based inelastic design of new building structures; 3) seismic design of moment frame, braced frame and shear wall structures; These topics will be discussed from the standpoint of risk-informed performance-based seismic design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Moodle is used to manage the course learning material. These include the lecture presentations, additional reading, exercise problems and solutions, example models of structures in OpenSees system for earthquake engineering simulation, and example designs. Lectures are streamed and recorded using the ETH Video Portal. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Design of Reinforced Concrete Buildings for Seismic Performance: Practical Deterministic and Probabilistic Approaches (1st ed.). Aschheim, M., Hernández-Montes, E., & Vamvatsikos, D. (2019). CRC Press. https://doi.org/10.1201/b19964 Dynamics of Structures: Theory and Applications to Earthquake Engineering, 5th edition, 2017/2020, Chopra, A. Prentice Hall, https://www.pearson.com/us/higher-education/program/Chopra-Dynamics-of-Structures-5th-Edition/PGM1101746.html Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Borzorgnia, Y. and Bertero, V. Eds., CRC Press, 2004 Erdbebensicherung von Bauwerken, 2nd edition, Bachmann, H. Birkhäuser, Basel, 2002 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | ETH Seismic Design of Structures I course, or equivalent. Students are expected to understand the seismological nature of earthquakes, to characterize the ground motion excitation, to analyze the response of elastic single- and multiple-degree-of-freedom systems to earthquake excitation, to use the concept of response and design spectrum, to compute the equivalent seismic loads on simple structures, and to perform code-based seismic design of simple structures. Familiarity with structural analysis software, such as SAP2000 or OpenSees, and general-purpose software, such as Python and Matlab, is expected. Number of participants limited to 18. All students go on a waiting list. Final registration based on an application letter (information given in the first lecture). Priority will be given to students who completed Seismic Design of Structures I (101-0188-00 G) and are in the primary target group (majoring in Structural Engineering and/or doing project-based coursework for other majors). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-1187-00L | Colloquium in Structural Engineering | 0 credits | 2K | A. Taras, E. Chatzi, A. Frangi, W. Kaufmann, B. Stojadinovic, B. Sudret, M. Vassiliou | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Professors from national and international universities, technical experts from the industry as well as research associates of the institute of structural engineering (IBK) are invited to present recent research results and specific projects from the practice. This colloquium is adressed to members of universities, practicing engineers and interested persons in general. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Learn about recent research results in structural engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
139-0101-00L | Module 1: Introduction to Seismic Design and Swiss Seismic Code Provisions Only for CAS in Seismic Evaluation and Retrofitting. | 2 credits | 3G | A. Tsiavos, B. Stojadinovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The objective of this Module is to introduce the principles of Seismic Design of Structures and the Swiss Seismic Code Provisions to Civil Engineers working in Switzerland. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This module enables participants: - To understand the critical points of the Swiss Code Provisions for the seismic design of new structures and the seismic evaluation of existing structures - To get an overview in the dynamics and the principles of seismic design of structures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1.1 Introduction to seismic hazard and seismic risk, seismic performance objectives, common structural deficiencies and observed damage patterns due to earthquake ground motion excitation 1.2 Seismic elastic and inelastic response of SDOF systems and earthquake response spectra 1.3 Seismic elastic and inelastic response of MDOF systems, Response Spectrum Analysis and Pushover Analysis 1.4 Seismic Design of structures using SIA 261: Presentation and Examples 1.5 Good practices for the seismic design of new structures 1.6 Seismic safety of non-structural components 1.7 Swiss Code Provisions for the seismic evaluation of existing structures SIA 269/8: Presentation and examples, Evaluation of commensurability of seismic retrofitting measures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | -Anwesenheit (mind. 80% pro Präsenzwoche) und aktive Mitarbeit in den Präsenzwochen - mindestens genügende Leistungen bei Leistungskontrollen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
139-0102-00L | Module 2: Finite Element Modelling and Identification of the Seismic Behavior of Structures Only for CAS in Seismic Evaluation and Retrofitting. | 2 credits | 3G | A. Tsiavos, B. Stojadinovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This module enables participants: - To use the state-of-the-art FEM software and implement the optimal FE modelling techniques for the simulation of the seismic response of existing buildings (concrete, masonry, mixed concrete-masonry) located in Switzerland -To obtain knowledge of the FEM software and the modelling techniques for the simulation of soil-structure interaction -To understand the current methodologies for the identification and monitoring of the vibration and the seismic behavior of structures located in Switzerland. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
139-0103-00L | Module 3: Analysis Methods and Case Study Examples of Seismic Evaluation and Retrofitting Only for CAS in Seismic Evaluation and Retrofitting. | 2 credits | 3G | A. Tsiavos, B. Stojadinovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The scope of this Module is to present Analysis Methods and Case Study Examples that illustrate established procedures and practical engineering solutions that are applied in the seismic evaluation and retrofitting of existing structures by Civil Engineers working in Switzerland. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This module enables participants: -To acquire practical knowledge of the seismic retrofitting techniques commonly used in Switzerland, their implementation and their cost -To select the appropriate analysis method for the seismic evaluation of structures located in Switzerland and understanding of the governing factors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
139-0104-00L | Module 4: Individual Project Exercise Only for CAS in Seismic Evaluation and Retrofitting. | 4 credits | 2P | A. Tsiavos, B. Stojadinovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This modules enables participants -To cunduct independently a seismic evaluation of an existing structure located in Switzerland considering the boundary conditions that influence the seismic behavior of the structure | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
364-1058-00L | Risk Center Seminar Series | 0 credits | 2S | H. Schernberg, D. Basin, A. Bommier, D. N. Bresch, S. Brusoni, L.‑E. Cederman, P. Cheridito, F. Corman, H. Gersbach, C. Hölscher, K. Paterson, G. Sansavini, B. Stojadinovic, B. Sudret, J. Teichmann, R. Wattenhofer, U. A. Weidmann, S. Wiemer, M. Zeilinger, R. Zenklusen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. Students and other guests are welcome. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Participants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models for open problems, to analyze them with computers, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the colloquium. Students and other guests are welcome. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | There is no script, but a short protocol of the sessions will be sent to all participants who have participated in a particular session. Transparencies of the presentations may be put on the course webpage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be provided by the speakers in their respective presentations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Participants should have relatively good mathematical skills and some experience of how scientific work is performed. |