Andrew de Mello: Katalogdaten im Herbstsemester 2020

NameHerr Prof. Dr. Andrew de Mello
LehrgebietBiochemisches Engineering
Adresse
Inst. f. Chemie- u. Bioing.wiss.
ETH Zürich, HCI F 115
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telefon+41 44 633 66 10
E-Mailandrew.demello@chem.ethz.ch
URLhttps://www.demellogroup.ethz.ch
DepartementChemie und Angewandte Biowissenschaften
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
529-0030-00LPraktikum Chemie Belegung eingeschränkt - Details anzeigen 3 KP6PN. Kobert, A. de Mello, M. H. Schroth
KurzbeschreibungIm Praktikum Chemie werden grundlegende Techniken der Laborarbeit erlernt.
Die Experimente umfassen sowohl analytische als auch präparative Aufgaben. So werden z. B. Boden-und Wasserproben analysiert, ausgewählte Synthesen durchgeführt, und die Arbeit
mit gasförmigen Substanzen im Labor wird vermittelt.
LernzielEinblick in die experimentelle Methodik der Chemie: Verhalten im
Labor, Umgang mit Chemikalien. Beobachten und Beschreiben grundlegender chemischer Reaktionen.
InhaltNatürliche und künstliche Stoffe: Merkmale, Gruppierungen,
Persistenz. Solvatation: vom Wasser bis zum Erdöl.
Protonenübertragungen. Lewis-Säuren und Basen: Metallzentren und
Liganden. Elektrophile C-Zentren und nukleophile Reaktanden.
Mineralbildung. Redoxprozesse: Uebergangsmetallkomplexe. Gase der
Atmosphäre.
SkriptDas Skript zum Praktikum und die Versuchsanleitungen werden
auf einer eigenen homepage zugänglich gemacht.
Die entsprechenden Informationen werden am 1. Semestertag bekanntgegeben.
LiteraturDie genaue Vorbereitung anhand des Praktikums- und des Vorlesungsskripts
ist Voraussetzung für die Teilnahme am Praktikum.
Voraussetzungen / BesonderesSchutzkonzept: https://chab.ethz.ch/studium/bachelor1.html
529-0557-00LChemical Engineering Thermodynamics4 KP3GA. de Mello, S. Stavrakis
KurzbeschreibungThis course introduces the basic principles and concepts of chemical engineering thermodynamics. Whilst providing insights into the meaning and properties of primary thermodynamic quantities, the course also has a primary focus on the application of these concepts to real chemical engineering problems.
LernzielA key objective of the course is to present a rigorous treatment of classical thermodynamics, whilst retaining a strong engineering perspective. Accordingly, real-world engineering examples will be used to highlight how thermodynamics is applied in engineering practice. The core ideas presented and developed within the course will provide a foundation for subsequent studies in such fields as fluid mechanics, heat transfer and statistical thermodynamics.
InhaltThe first part of the course introduces the basic concepts and language of chemical engineering thermodynamics. This is followed by an analysis of energy and energy transfer, with a specific focus on the concept of work and the first law of thermodynamics. Next, the notion of a pure substance is introduced, with a discussion of the physics of phase-changes being presented. The description of pure substances is further developed through an analysis of the PVT behavior of fluids, equation of states, ideal and non-ideal gas behaviour and compressibility factors.

The second part of the course begins with a discussion of the use of the energy balance relation in closed systems that involve pure substances and then develops relations for the internal energy and enthalpy of ideal gases. Next, the second law of thermodynamics is introduced, with a discussion of why processes occur in certain directions and why energy has quality as well as quantity. Applications to cyclic devices such as thermal energy reservoirs, heat engines and refrigerators are provided. Entropy changes that take place during processes for pure substances, incompressible substances and ideal gases are described.

The third part of the course establishes thermodynamic formulations for the calculation of enthalpy, internal energy and entropy as function of pressure and temperature, Gibbs energy, fugacity and chemical potential. Two-phase systems are introduced as well as the use of equations of state to construct the complete phase diagrams of pure fluid.

The final part of the course focuses on the properties of mixtures and the phase behavior of multicomponent systems. The fundamental equations of phase equilibria in terms of the chemical potential and fugacity are also discussed. The concept of an ideal solution is introduced and developed. This is followed by an assessment of non-ideal behavior and the use of activity coefficients for describing phase diagrams. Particular focus is given to phase equilibria. Finally, concepts relating to chemical equilibria are introduced with the general concepts developed being applied to reacting species. Examples here include the calculation of the standard enthalpy, Gibbs free entropy and the equilibrium constant of a reaction.
SkriptLecture handouts, background literature, problem sheets and notes will be made accessible to enrolled students through the lecture Moodle site.
LiteraturAlthough there is not set text for the course, the following three texts will be used in part and are excellent introductions to Chemical Engineering thermodynamics:

1. Fundamentals of Chemical Engineering Thermodynamics: With applications to chemical processes, Themis Matsoukas, Prentice Hall, 2013.

2. Fundamentals of Thermodynamics, Claus Borgnakke & Richard E. Sonntag, 8th Edition, Wiley, 2012.

3. Thermodynamics: An Engineering Approach, Yunus A. Çengel & Michael A. Boles, 8th Edition, McGraw-Hill, 2014.

Resources for the acquisition of material properties and data:

1. NIST Chemistry WebBook (https://webbook.nist.gov/chemistry/)

2. CRC Handbook of Chemistry & Physics, 99th Edition (http://hbcponline.com/)
Voraussetzungen / BesonderesA basic knowledge of chemical thermodynamics is required.
529-0837-01LBiomicrofluidic Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 25.
6 KP3GA. de Mello
KurzbeschreibungMicrofluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner.
LernzielIn the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics.
InhaltSpecific topics in the course include, but not limited to:

1. Theoretical Concepts
Features of mass and thermal transport on the microscale
Key scaling laws
2. Microfluidic Device Manufacture
Conventional lithographic processing of rigid materials
Soft lithographic processing of plastics and polymers
Mass fabrication of polymeric devices
3. Unit operations and functional components
Analytical separations (electrophoresis and chromatography)
Chemical and biological synthesis
Sample pre-treatment (filtration, SPE, pre-concentration)
Molecular detection
4. Design Workshop
Design of microfluidic architectures for PCR, distillation & mixing
5. Contemporary Applications in Biological Analysis
Microarrays
Cellular analyses (single cells, enzymatic assays, cell sorting)
Proteomics
6. System integration
Applications in radiochemistry, diagnostics and high-throughput experimentation
SkriptLecture handouts, background literature, problem sheets and notes will be provided electronically.
Voraussetzungen / BesonderesSchutzkonzept: https://chab.ethz.ch/studium/bachelor1.html