Andrew de Mello: Catalogue data in Autumn Semester 2020 |
Name | Prof. Dr. Andrew de Mello |
Field | Biochemical Engineering |
Address | Inst. f. Chemie- u. Bioing.wiss. ETH Zürich, HCI F 115 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 66 10 |
andrew.demello@chem.ethz.ch | |
URL | https://www.demellogroup.ethz.ch |
Department | Chemistry and Applied Biosciences |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-0030-00L | Laboratory Course: Elementary Chemical Techniques | 3 credits | 6P | N. Kobert, A. de Mello, M. H. Schroth | |
Abstract | This practical course provides an introduction to elementary laboratory techniques. The experiments cover a wide range of techniques, including analytical and synthetic techniques (e. g. investigation of soil and water samples or the preparation of simple compunds). Furthermore, the handling of gaseous substances is practised. | ||||
Learning objective | This course is intended to provide an overview of experimental chemical methods. The handling of chemicals and proper laboratory techniques represent the main learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course. | ||||
Content | The classification and analysis of natural and artificial compounds is a key subject of this course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks: Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations, spectroscopy or ion chromatography. The chemistry of aqeous solutions (acid-base equilibria and solvatation or precipitation processes) is studied. The synthesis of simple inorganic complexes or organic molecules is practised. Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum. | ||||
Lecture notes | The script will be published on the web. Details will be provided on the first day of the semester. | ||||
Literature | A thorough study of all script materials is requested before the course starts. | ||||
Prerequisites / Notice | Safety concept: https://chab.ethz.ch/studium/bachelor1.html | ||||
529-0557-00L | Chemical Engineering Thermodynamics | 4 credits | 3G | A. de Mello, S. Stavrakis | |
Abstract | This course introduces the basic principles and concepts of chemical engineering thermodynamics. Whilst providing insights into the meaning and properties of primary thermodynamic quantities, the course also has a primary focus on the application of these concepts to real chemical engineering problems. | ||||
Learning objective | A key objective of the course is to present a rigorous treatment of classical thermodynamics, whilst retaining a strong engineering perspective. Accordingly, real-world engineering examples will be used to highlight how thermodynamics is applied in engineering practice. The core ideas presented and developed within the course will provide a foundation for subsequent studies in such fields as fluid mechanics, heat transfer and statistical thermodynamics. | ||||
Content | The first part of the course introduces the basic concepts and language of chemical engineering thermodynamics. This is followed by an analysis of energy and energy transfer, with a specific focus on the concept of work and the first law of thermodynamics. Next, the notion of a pure substance is introduced, with a discussion of the physics of phase-changes being presented. The description of pure substances is further developed through an analysis of the PVT behavior of fluids, equation of states, ideal and non-ideal gas behaviour and compressibility factors. The second part of the course begins with a discussion of the use of the energy balance relation in closed systems that involve pure substances and then develops relations for the internal energy and enthalpy of ideal gases. Next, the second law of thermodynamics is introduced, with a discussion of why processes occur in certain directions and why energy has quality as well as quantity. Applications to cyclic devices such as thermal energy reservoirs, heat engines and refrigerators are provided. Entropy changes that take place during processes for pure substances, incompressible substances and ideal gases are described. The third part of the course establishes thermodynamic formulations for the calculation of enthalpy, internal energy and entropy as function of pressure and temperature, Gibbs energy, fugacity and chemical potential. Two-phase systems are introduced as well as the use of equations of state to construct the complete phase diagrams of pure fluid. The final part of the course focuses on the properties of mixtures and the phase behavior of multicomponent systems. The fundamental equations of phase equilibria in terms of the chemical potential and fugacity are also discussed. The concept of an ideal solution is introduced and developed. This is followed by an assessment of non-ideal behavior and the use of activity coefficients for describing phase diagrams. Particular focus is given to phase equilibria. Finally, concepts relating to chemical equilibria are introduced with the general concepts developed being applied to reacting species. Examples here include the calculation of the standard enthalpy, Gibbs free entropy and the equilibrium constant of a reaction. | ||||
Lecture notes | Lecture handouts, background literature, problem sheets and notes will be made accessible to enrolled students through the lecture Moodle site. | ||||
Literature | Although there is not set text for the course, the following three texts will be used in part and are excellent introductions to Chemical Engineering thermodynamics: 1. Fundamentals of Chemical Engineering Thermodynamics: With applications to chemical processes, Themis Matsoukas, Prentice Hall, 2013. 2. Fundamentals of Thermodynamics, Claus Borgnakke & Richard E. Sonntag, 8th Edition, Wiley, 2012. 3. Thermodynamics: An Engineering Approach, Yunus A. Çengel & Michael A. Boles, 8th Edition, McGraw-Hill, 2014. Resources for the acquisition of material properties and data: 1. NIST Chemistry WebBook (https://webbook.nist.gov/chemistry/) 2. CRC Handbook of Chemistry & Physics, 99th Edition (http://hbcponline.com/) | ||||
Prerequisites / Notice | A basic knowledge of chemical thermodynamics is required. | ||||
529-0837-01L | Biomicrofluidic Engineering Number of participants limited to 25. | 6 credits | 3G | A. de Mello | |
Abstract | Microfluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner. | ||||
Learning objective | In the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics. | ||||
Content | Specific topics in the course include, but not limited to: 1. Theoretical Concepts Features of mass and thermal transport on the microscale Key scaling laws 2. Microfluidic Device Manufacture Conventional lithographic processing of rigid materials Soft lithographic processing of plastics and polymers Mass fabrication of polymeric devices 3. Unit operations and functional components Analytical separations (electrophoresis and chromatography) Chemical and biological synthesis Sample pre-treatment (filtration, SPE, pre-concentration) Molecular detection 4. Design Workshop Design of microfluidic architectures for PCR, distillation & mixing 5. Contemporary Applications in Biological Analysis Microarrays Cellular analyses (single cells, enzymatic assays, cell sorting) Proteomics 6. System integration Applications in radiochemistry, diagnostics and high-throughput experimentation | ||||
Lecture notes | Lecture handouts, background literature, problem sheets and notes will be provided electronically. | ||||
Prerequisites / Notice | Safety concept: https://chab.ethz.ch/studium/bachelor1.html |