Name | Prof. Dr. Andreas Krause |
Field | Computer Science |
Address | Institut für Maschinelles Lernen ETH Zürich, OAT Y 13.1 Andreasstrasse 5 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 63 22 |
Fax | +41 44 623 15 62 |
krausea@ethz.ch | |
URL | http://las.ethz.ch/krausea.html |
Department | Computer Science |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
263-5210-00L | Probabilistic Artificial Intelligence | 8 credits | 3V + 2U + 2A | A. Krause | ||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics. | |||||||||||||||||||||||||||||||||||||||||
Learning objective | How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students. | |||||||||||||||||||||||||||||||||||||||||
Content | Topics covered: - Probability - Probabilistic inference (variational inference, MCMC) - Bayesian learning (Gaussian processes, Bayesian deep learning) - Probabilistic planning (MDPs, POMPDPs) - Multi-armed bandits and Bayesian optimization - Reinforcement learning | |||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Solid basic knowledge in statistics, algorithms and programming. The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite. | |||||||||||||||||||||||||||||||||||||||||
Competencies |
|