Johannes Lengler: Katalogdaten im Herbstsemester 2023

NameHerr Prof. Dr. Johannes Lengler
Adresse
Informatik (Theoretische Inform.)
ETH Zürich, OAT Z 14.1
Andreasstrasse 5
8092 Zürich
SWITZERLAND
E-Mailjohannes.lengler@inf.ethz.ch
DepartementInformatik
BeziehungTitularprofessor

NummerTitelECTSUmfangDozierende
252-0026-00LAlgorithmen und Datenstrukturen Information 7 KP3V + 2U + 1AJ. Lengler, D. Steurer
KurzbeschreibungThe Kurs behandelt die Grundlagen des Entwurfs und der Analyse von Algorithmen und Datenstrukturen. Diese werden anhand von klassischen algorithmischen Problemen einschliesslich Graphenproblemen studiert. Die dazu nötige Einführung in die Graphentheorie ist ebenfalls Teil dieses Kurses.
LernzielVerständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen. Verständnis der Grundlagen der Graphentheorie und einiger ihrere grundlegenden Algorithmen,
InhaltDer Kurs ist eine Einführung in die Grundlagen des Designs and der Analyse von Algorithmen. Dazu gehören zum einen klassische Entwurfsmuster für Algorithmen wie Induktion, Divide-and-Conquer und dynamische Programmierung. Diese werden anhand von klassischen Problemen wie zum Beispiel Suchen und Sortieren studiert. Zum anderen geht es um das Zusammenspiel von Algorithmen und Datenstrukturen wie verkettete Listen, Suchbäumen, Heaps und Union-Find Strukturen. Ein besondere Fokus sind Graphenalgorithmen für Probleme wie kürzeste Wege und minimale Spannbäume. Die dazu notwendige erste Einführung in die Graphentheorie ist ebenfalls Teil der Vorlesung.
SkriptEin vollständiges Skript in Deutsch ist in der Entwicklung und bereits als vollständiger Entwurf auf der Vorlesungswebseite verfügbar.
LiteraturAbgesehen vom Skript und Vorlesungsunterlagen empfehlen wir die folgenden Bücher als zusätzliches Nachschlagewerk.

Th. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Spektrum-Verlag, 5. Auflage, Heidelberg, Berlin, Oxford, 2011

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: An Introduction to Algorithms, 3rd edition, MIT Press, 2009
252-4202-00LSeminar in Theoretical Computer Science Information Belegung eingeschränkt - Details anzeigen 2 KP2SE. Welzl, B. Gärtner, M. Hoffmann, J. Lengler, A. Steger, D. Steurer, B. Sudakov
KurzbeschreibungPräsentation wichtiger und aktueller Arbeiten aus der theoretischen Informatik, sowie eigener Ergebnisse von Diplomanden und Doktoranden.
LernzielDas Lernziel ist, Studierende an die aktuelle Forschung heranzuführen und sie in die Lage zu versetzen, wissenschaftliche Arbeiten zu lesen, zu verstehen, und zu präsentieren.
Voraussetzungen / BesonderesThis seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal restriction is: prior successful participation in a master level seminar in theoretical computer science.
263-4500-00LAdvanced Algorithms Information 9 KP3V + 2U + 3AJ. Lengler, B. Häupler, M. Probst
KurzbeschreibungThis is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.
LernzielThis course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.
InhaltThe lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.
Skripthttps://people.inf.ethz.ch/~aroeyskoe/AA23
Voraussetzungen / BesonderesThis course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Problemlösunggefördert