Bekim Berisha: Catalogue data in Autumn Semester 2022 |
Name | Dr. Bekim Berisha |
Address | Institut für virtuelle Produktion ETH Zürich, PFA G 17 Technoparkstrasse 1 8005 Zürich SWITZERLAND |
Telephone | +41 44 632 78 46 |
berisha@ivp.mavt.ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
151-0021-00L | Engineering Tool: Introduction to MATLAB ![]() The Engineering Tools courses are for MAVT Bachelor’s degree students only. | 0.4 credits | 1K | B. Berisha | |
Abstract | Introduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications. | ||||
Objective | Introduction to numerical calculations with MATLAB. | ||||
Content | Introduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications. | ||||
Lecture notes | Course material: https://moodle-app2.let.ethz.ch/course/view.php?id=15113 | ||||
Prerequisites / Notice | Der Kurs findet in einem Hörsaal statt und es stehen keine Rechner zur Verfügung. Es wird empfohlen, dass pro zwei Studierenden mindestens ein Laptop mit installiertem Matlab mitgebracht wird. Installation Matlab: - es funktionieren alle Versionen - netzunabhängige Node-Lizenz (z.B. zum Download im ETH IT Shop) - folgende Toolboxes/Features müssen installiert sein: Simulink (wird für RT1 benutzt), Curve Fitting Toolbox, Optimization Toolbox, Symbolic Toolbox, Global Optimization Toolbox | ||||
151-0303-00L | Dimensioning I | 3 credits | 3G | D. Mohr, B. Berisha, E. Mazza | |
Abstract | Introduction to Dimensioning of components and machine parts. Basic structural theories are introduced and a short introduction to finite elements is given. Further, elements from fracture mechanics, plasticity and stability of structures are presented. | ||||
Objective | The goal of the lecture is to build on and extend the theories from Mechanics 2. Students learn how to implement adequate models for practical dimensioning problems in mechanical engineering and how to solve and critically interpret these models. | ||||
Content | - Basic problem of continuum mechanics - Structural theories - Introduction to finite element methods - Strength of materials - Fatigue - Stability of structures | ||||
Lecture notes | Will be announced during the first lecture. | ||||
Literature | Will be announced during the first lecture. | ||||
151-0833-00L | Applied Finite Element Analysis | 4 credits | 2V + 2U | B. Berisha, D. Mohr | |
Abstract | Most problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced for treating such problems. The finite element program ABAQUS is introduced to investigate real engineering problems. | ||||
Objective | The goal of the lecture is to provide the students with the fundamentals of the non linear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of: - Crash - Collapse of structures - Material behavior (metals and rubber) - General forming processes Special attention will be paid to the modeling of the nonlinear material behavior, thermo-mechanical processes and processes with large plastic deformations. The ability to independently create a virtual model which describes the complex non linear systems will be acquired through accompanying exercises. These will include the Matlab programming of important model components such as constitutive equations. The FEM Program ABAQUS will be introduced to investigate real engineering problems | ||||
Content | - introduction into FEM - Fundamentals of continuum mechanics to characterize large plastic deformations - Elasto-plastic material models - Lagrange and Euler approaches - FEM implementation of constitutive equations - Element formulations - Implicit and explicit FEM methods - FEM formulations of coupled thermo-mechanical problems - Modeling of tool contact and the influence of friction - Solvers and convergence - Instability problems | ||||
Lecture notes | Lecture slides | ||||
Literature | Bathe, K. J., Finite-Element-Procedures, Prentice-Hall, 1996 |