Marc-Olivier Ebert: Catalogue data in Spring Semester 2018

Name Dr. Marc-Olivier Ebert
Address
Lab. für Organische Chemie
ETH Zürich, HCI E 315
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 633 47 26
Fax+41 44 632 14 75
E-mailmarc-olivier.ebert@org.chem.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipLecturer

NumberTitleECTSHoursLecturers
529-0042-00LStructure Elucidation by NMR4 credits2GM.‑O. Ebert
AbstractStructure Elucidation of Complex Organic Molecules by NMR
Learning objectiveStructure elucidation of complex organic molecules (including peptides, oligosaccharides and oligonucleotides) by advanced 1D and 2D NMR spectroscopy. The emphasis of the course is on the selection of optimal strategies for the solution of a given problem, spectrum interpretation and possible artifacts. Solving and discussing practical case studies/problems demonstrating the individual methods and, in the last third of the course, the combined application of several methods form an important part of the course.
ContentStructure determination by multi-pulse and 2D NMR spectroscopy. Homonuclear and heteronuclear shift correlation through scalar coupling; one and two dimensional methods based on the nuclear Overhauser effect. Choosing the best strategy for a given problem, interpretation and artefacts.
Lecture notesScripts (in English) are distributed in the course
LiteratureT.D.W. Claridge, High Resolution NMR Techniques in Organic Chemistry, Pergamon Press, 1999 (NMR part)
Further reading and citations are listed in the script.
Prerequisites / NoticeThe course language is English.
Required level:
Courses in analytical chemistry of the 2nd year or equivalent.
529-0054-00LPhysical and Analytical Chemistry10 credits15PE. C. Meister, R. Zenobi, M. Badertscher, M.‑O. Ebert, B. Hattendorf
AbstractPractical introduction to important experimental methods in physical and analytical chemistry.
Learning objectiveThe students have to carry out selected experiments in physical chemistry and evaluate measurement data.
They acquire a good knowledge about the most important practical techniques in analytical chemistry.
Laboratory reports have to be written to each experiment.
ContentPhysical chemistry part:
Short recapitulation of statistics and analysis of measurement data. Writing experimental reports with regard to publication of scientific works. Basic physical chemistry experiments (a maximum of six experiments form the following themes): 1. Phase diagrams (liquid-vapour and solid-liquid phase diagrams, cryoscopy); 2. electrochemistry and electronics; 3. quantum chemistry studies; 4. kinetics; 5. thermochemistry; 6. speed of sound in gases and liquids; 7. surface tension.

Analytical chemistry part:
1. Introduction to the concept of sampling, quantitative elemental analysis and trace analysis, atomic spectroscopic methods, comparative measurements with electrochemical methods; 2. Separation methods, their principles and optimisation: comparison of the different chromatographic methods, effect of the stationary and mobile phases, common errors/artefacts, liquid chromatography, gas chromatography (injection methods). 3. Spectroscopic methods in organic structure determination: recording of IR and UV/VIS spectra, recording technique in NMR

Mandatory exercises in spectroscopy in an accompanying tutorial 529-0289-00 "Instrumentalanalyse organischer Verbindungen" are an integral part of this course.
Lecture notesDescriptions for experiments available online.
LiteratureFür PC-Teil: Erich Meister, Grundpraktikum Physikalische Cheme, 2. Aufl. Vdf UTB, Zürich 2012.
Prerequisites / NoticePrerequisites:
529-0051-00 "Analytische Chemie I (3. Semester)"
529-0058-00 "Analytische Chemie II (4. Semester)" in parallel to the lab class, or completed in an earlier semester. The course 529-0289-00L "Instumentalanalyse organischer Verbindungen" is an obligatory component of the lab class / praktikum.
529-0058-AALAnalytical Chemistry II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RD. Günther, M.‑O. Ebert, P. Lienemann, G. Schwarz, R. Zenobi
AbstractEnhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.
Learning objectiveUse and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems.
ContentCombined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS.
Literaturegeneral: R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
XRF: R. Schramm, X-Ray Fluorescence Analysis: Practical and Easy, Fluxana, Kleve, 2012;
ICP-MS: R. Thomas, Practical Guide to ICP-MS - A Tutorial for beginners, 3rd Edition, CRC Press, Taylor & Francis Group, Boca Raton, 2013 (especially: chapters 1-15, 19 and 21).
Separation methods: S. Ahuja (Ed.), Chromatography and Separation Science, Volume 4 of series "Separation Science and Technology", Elsevier Academic Press, San Diego, 2003.
K. Robards, P. R. Haddad, and P. E. Jackson, Principle and Practise of Modern Chromatographic Methods, Academic Press, London, 1994.
F. Foret, L. Krivankova, and P. Bocek, Capillary Zone Electrophoresis, VCH, Weinheim (1993)
Prerequisites / NoticeNone.
529-0058-00LAnalytical Chemistry II3 credits3GD. Günther, T. Bucheli, M.‑O. Ebert, P. Lienemann, G. Schwarz
AbstractEnhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.
Learning objectiveUse and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems.
ContentCombined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS.
Lecture notesScript will be available
LiteratureLiterature will be within the script.
Prerequisites / NoticeExercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended.
Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester)