Robert J. Flatt: Catalogue data in Spring Semester 2021

Name Prof. Dr. Robert J. Flatt
FieldConstruction Materials
Address
Institut für Baustoffe (IfB)
ETH Zürich, HIF E 91.1
Laura-Hezner-Weg 7
8093 Zürich
SWITZERLAND
Telephone+41 44 633 28 90
E-mailflattr@ethz.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
101-0603-01LChemistry for Civil Engineers3 credits3GR. J. Flatt
AbstractChemistry is an important fundamental topic for civil engineers, e.g. in understanding the properties of building materials, the natural environment (atmosphere and solutions) and the reaction of building materials with the environment (corrosion of metals, durability). The course intends to teach the fundamentals of chemistry (see table of contents) with a focus on these applied topics.
ObjectiveUnderstanding the basic principles of chemistry with particular emphasis on applications in civil engineering.
ContentAtome und Moleküle: Aufbau der Atome, Protonen, Neutronen, Elektronen, Molmasse, das Periodensystem, Isotope, Radioaktivität, Halbwertszeiten, Beispiel Radon, Bindungstypen (kovalent, ionisch und metallisch), Lewis Formeln, Elektronegativität

Gase: Druck und Temperatur, Gasgesetze, Ideales Gasgesetz, Partialdruck, die Atmosphäre, Ozongleichgewicht

Zwischenmolekulare Kräfte (London Dispersions, Dipol, H-Brücken), Siedepunkte, Viskosität, Spezialfall Wasser. Metallische Bindung, Metalle, Gitterstrukuren, Ingenieurkenngrössen (E-Modul, thermische Ausdehnung)

Physikalische Gleichgewichte (Verdampfen/Kondensieren), Dampfdruck, Gleichgewichtszustand, Phasendiagramme,

Elektrolyte, Hydratation, Löslichkeit von Gasen und Salzen, Gitterenthalpie, Löslichkeitsprodukte, Kalk/CO2 Gleichgewichte

Das chemische Gleichgewicht, Reaktionsgleichungen, Massenwirkungsgesetz, Gleichgewichtskonstanten, Einfluss von Konzentration und Temperatur, thermodynamischer Ursprung des Gleichgwichts (Freie Enthalpie G als Kriterium für spontane Reaktionen, G und Gleichgewichtskonstante K)

Säuren und Basen, konjugierte Säure Base Paare, Hydrolyse, starke und schwache Säuren, pH Wert, Alkalinität des Betons, Pufferlösung, Pufferkapazität, Indikatoren, Löslichkeit und pH, Autoprotolyse

Kohlenwasserstoffe, Hybridisierung C-Atome, C-C Bindung, Einteilung der Kohlenwasserstoffe, Funktionelle Gruppen. Polymere, Polymerisation, Polykondensation, Makromoleküle, Einfluss auf Bindungskräfte zwischen Makromolekülen, wichtige Thermoplaste im Bauwesen

Chemische Kinetik, Gleichgewicht, Aktivierungdsenergie, Reaktionsgeschwindigkeit, Geschwindigkeitsgesetze, Reaktionsmechanismen, Einfluss der Temperatur

Redox Prozesse, Oxidationszahl, Halbreaktion, galvanische Zellen, Standardpotenziale, Spannungsreihe, Verknüpfung mit Thermodynamik, Nernst Gleichung

Galvanische Zellen, Konzentrationszellen, Ionensensitive Elektroden, Daniell Element, Batterien, Elektrolyse, Aluminiumgewinnung.

Korrosion als Systemeigenschaft Werkstoff/Umwelt, Korrosionsformen, elektrochemischer Mechanismus der Korrosion, anodische und kathodische Teilreaktionen, Potential-pH Diagramme
Lecture notesDer Kurs wird als TORQUE (Tiny, Open-with-Restrictions courses focused on QUa-lity and Effectiveness) angeboten. Die Studierenden sollen dabei jede Woche zur Vorbereitung des Kurses einige Videoeinheiten anschauen. Diese Videoeinheiten sowie zusätzlich auch Folien und Texteinheiten dazu sind auf Moodle abrufbar.
LiteraturePeter W. Atkins, Loretta Jones
Chemie - einfach alles
WILEY-VCH, zweite Auflage(2006)
101-0604-02LIntroduction to Materials5 credits4GR. J. Flatt, U. Angst, I. Burgert, F. Wittel
AbstractIn this introductory lecture, students gain basic knowledge on building materials like cement, concrete, metals, glass, wood, polymers, and bitumen, their manufacturing and processing, important properties and their application. Fundamental mechanical, thermal and optical properties are discussed and experimental ways for measuring, as well as numerical methods for predicting them, are depicted.
ObjectiveStudents become acquainted with the spectrum of building materials and their characteristic properties. They will learn about the most important mechanical properties, as well as factors affecting durability. In particular, structures and properties of mineral binders, cement, concrete, bitumen and asphalt, wood, metals, glass, and polymers are presented. Students learn about the fundamental behavior of materials, experimental measurement of characteristic properties, as well as means for their numerical prediction and optimization.
Content-Fundamental behavior of building materials: mechanical, thermal and optical properties; strength and fracture; material testing and parameter identification; porosity and moisture transport;
-Mineral binders: production and hydration
-Concrete: Mechanics and rheology, durability, freezing, shrinkage, and carbonation.
-Metals: Introduction and physical properties, alloying and iron-carbon alloys, processing and applications in civil engineering.
-Corrosion: Atmospheric corrosion and durability of steel-reinforced concrete.
-Wood: Structure and chemism, mechanical properties, wood protection, and wood materials.
-Glass: Introduction on glass and physical properties, processing and applications in civil engineering.
-Polymers: Foundations, properties, and processing, applications in civil engineering.
-Asphalt and bitumen.
-Material modeling: Basics of material modeling, micro-mechanics and case studies for building materials.
Lecture notesAll lecture materials are distributed on the moodle page of the course.
LiteratureAshby/Jones: Engineering Materials I and II
Ashby: Materials Selection in Mechanical Design
101-0658-00LConcrete Material Science4 credits2GR. J. Flatt, T. Wangler
AbstractConcrete Material Science examines how concrete properties are affected by its microstructure and how its microstructure is controlled by processing and composition. To achieve this, the course comprises a comprehensive presentation of the different techniques used to characterize concrete and its constituents, both in research and construction practice.
ObjectiveIn this course you will gain a thorough understanding of common techniques for characterizing engineering, microstructural, physical and chemical properties of concrete. You will learn how this knowledge can be used both in research and industrial environments. In practice, these techniques are used, for example, to evaluate new materials, diagnose causes of problems, determine responsibilities, handle reclaims or quality insurance as well as devise an experimental program in research and development. Throughout the course various references you will also learn about how concrete can be designed to have a reduced environmental impact and increased service life.
ContentProgram:
1. Introduction to Concrete Material Science
2. Thermodynamic modeling of cement hydration and its industrial relevance. Dr. Thomas Matschei (Holcim Group Support)
3. Characterization techniques of cementitious materials I
4. Characterization techniques of cementitious materials II
5. Characterization techniques of cementitious materials III: Solid State NMR. Prof. Jean-Baptiste d'Espinose (ESPCI)
6. Fresh properties of concrete - Rheology
7. Chemical admixtures
8. Transport in porous media
9. Durability I
10. Alternative binders
11. Durability II - Alkali-Silica Reaction. Dr. Andreas Lehmann (EMPA)
12. Practical exercises I
13. Practical exercises II
14. Practical exercises III
Lecture notesStudents will receive all obligatory literature in printed form.
LiteratureStudents will recieve all obligatory literature in printed form.
Prerequisites / NoticeStudents with Bachelor Degree
Further degrees: Dipl. Ing. ETH or FH