Eleni Chatzi: Katalogdaten im Frühjahrssemester 2019 |
Name | Frau Prof. Dr. Eleni Chatzi |
Lehrgebiet | Strukturmechanik und Monitoring |
Adresse | Inst. f. Baustatik u. Konstruktion ETH Zürich, HIL E 33.3 Stefano-Franscini-Platz 5 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 67 55 |
chatzi@ibk.baug.ethz.ch | |
URL | http://www.chatzi.ibk.ethz.ch/ |
Departement | Bau, Umwelt und Geomatik |
Beziehung | Ordentliche Professorin |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
101-0114-00L | Baustatik II | 5 KP | 4G | E. Chatzi | |
Kurzbeschreibung | Statisch unbestimmte Stabtragwerke (Verformungsmethode), Einflusslinien, Elastisch-plastische Systeme, Traglastverfahren (statische und kinematische Methode), Stabilitätsprobleme. | ||||
Lernziel | Beherrschen der Methoden zur Berechnung statisch unbestimmter Stabtragwerke Erweiterung des Verständnisses des Tragverhaltens von Stabtragwerken unter Einbezug nichtlinearer Effekte Fähigkeit, Resultate numerischer Berechnungen vernünftig zu interpretieren und zu kontrollieren | ||||
Inhalt | Lineare Statik der Stabtragwerke Verformungsmethode Matrizenstatik Nichtlineare Statik der Stabtragwerke Elastisch-plastische Systeme Traglastverfahren Stabilitätsprobleme | ||||
Literatur | Simon Zweidler, "Baustatik II", 2017. Peter Marti, "Baustatik", Wilhelm Ernst & Sohn, Berlin, 2012, 683 pp. | ||||
Voraussetzungen / Besonderes | Voraussetzung: "Baustatik I" | ||||
101-0158-01L | Method of Finite Elements I | 4 KP | 2G | E. Chatzi, P. Steffen | |
Kurzbeschreibung | This course will introduce students to the fundamental concepts of the widely established Method of Finite Elements including element formulations, numerical solution procedures and modelling details. The course will also equip students with the ability to code algorithms (largely based on MATLAB) for the solution of practical problems in Infrastructure and Civil engineering. | ||||
Lernziel | The Direct Stiffness Method is revisited and the basic principles of Matrix Structural Analysis are overviewed. The basic theoretical concepts of the Method of Finite Elements are imparted and perspectives for problem solving procedures are provided. Linear finite element models for truss and continuum elements are introduced and their application for structural elements is demonstrated. The Method of Finite Elements is implemented on practical problems through accompanying demonstrations and assignments. | ||||
Inhalt | 1) Introductory Concepts Matrices and linear algebra - short review. 2) The Direct Stiffness Method Demos and exercises in MATLAB & Commercial FE software 3) Formulation of the Method of Finite Elements. - The Principle of Virtual Work - Isoparametric formulations - 1D Elements (truss, beam) - 2D Elements (plane stress/strain) Demos and exercises in MATLAB & Commercial FE software 4) Practical application of the Method of Finite Elements. - Practical Considerations - Results Interpretation - Final Project where a Real Test Case is modelled and analyzed | ||||
Skript | The lecture notes are in the form of slides, available online from the course webpage | ||||
Literatur | Bathe, K.J., Finite Element Procedures, Prentice Hall, 1996. | ||||
Voraussetzungen / Besonderes | Prior knowledge of MATLAB is not necessary, but as the course develops the students are expected to actively engage in the coding of basic scripts. | ||||
101-0190-08L | Uncertainty Quantification and Data Analysis in Applied Sciences Findet dieses Semester nicht statt. The course should be open to doctoral students from within ETH and UZH who work in the field of Computational Science. External graduate students and other auditors will be allowed by permission of the instructors. | 3 KP | 4G | E. Chatzi, P. Koumoutsakos, B. Sudret | |
Kurzbeschreibung | The course presents fundamental concepts and advanced methodologies for handling and interpreting data in relation with models. It elaborates on methods and tools for identifying, quantifying and propagating uncertainty through models of systems with applications in various fields of Engineering and Applied science. | ||||
Lernziel | The course is offered as part of the Computational Science Zurich (CSZ) (http://www.zhcs.ch/) graduate program, a joint initiative between ETH Zürich and University of Zürich. This CSZ Block Course aims at providing a graduate level introduction into probabilistic modeling and identification of engineering systems. Along with fundamentals of probabilistic and dynamic system analysis, advanced methods and tools will be introduced for surrogate and reduced order models, sensitivity and failure analysis, parallel processing, uncertainty quantification and propagation, system identification, nonlinear and non-stationary system analysis. | ||||
Inhalt | The topics to be covered are in three broad categories, with a detailed outline available online (see Learning Materials). Track 1: Uncertainty Quantification and Rare Event Estimation in Engineering, offered by the Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich (20 hours) Lecturers: Prof. Dr. Bruno Sudret, Dr. Stefano Marelli Track 2: Bayesian Inference and Uncertainty Propagation, offered the by the System Dynamics Laboratory, University of Thessaly, and the Chair of Computational Science, ETH Zurich (20 hours) Lecturers: Prof. Dr. Costas Papadimitriou, Dr. Panagiotis Hadjidoukas, Prof. Dr. Petros Koumoutsakos Track 3: Data-driven Identification and Simulation of Dynamic Systems, offered the by the Chair of Structural Mechanics, ETH Zurich (20 hours) Lecturers: Prof. Dr. Eleni Chatzi, Dr. Vasilis Dertimanis. The lectures will be complemented via a comprehensive series of interactive Tutorials will take place. | ||||
Skript | The course script is composed by the lecture slides, which will be continuously updated throughout the duration of the course on the CSZ website. | ||||
Literatur | Suggested Reading: Track 2 : E.T. Jaynes: Probability Theory: The logic of Science Track 3: T. Söderström and P. Stoica: System Identification, Prentice Hall International, Link see Learning Materials. Xiu, D. (2010) Numerical methods for stochastic computations - A spectral method approach, Princeton University press. Smith, R. (2014) Uncertainty Quantification: Theory, Implementation and Applications SIAM Computational Science and Engineering, Lemaire, M. (2009) Structural reliability, Wiley. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. & Tarantola, S. (2008) Global Sensitivity Analysis - The Primer, Wiley. | ||||
Voraussetzungen / Besonderes | Introductory course on probability theory Fair command on Matlab | ||||
101-1187-00L | Kolloquium Baustatik und Konstruktion | 0 KP | 2K | B. Stojadinovic, E. Chatzi, M. Fontana, A. Frangi, W. Kaufmann, B. Sudret, T. Vogel | |
Kurzbeschreibung | Das Institut für Baustatik und Konstruktion (IBK) lädt Professoren in- und ausländischer Hochschulen, Fachleute aus Praxis & Industrie oder wissenschaftliche Mitarbeiter des Institutes als Referenten ein. Das Kolloquium richtet sich sowohl an Studierende und weitere Hochschulangehörige, als auch an Ingenieure aus der Praxis. | ||||
Lernziel | Neue Forschungsergebnisse aus dem Fachbereich Baustatik und Konstruktion kennen lernen. |