Konrad Schindler: Katalogdaten im Herbstsemester 2022

NameHerr Prof. Dr. Konrad Schindler
LehrgebietPhotogrammetrie
Adresse
I. f. Geodäsie u. Photogrammetrie
ETH Zürich, HIL D 42.3
Stefano-Franscini-Platz 5
8093 Zürich
SWITZERLAND
Telefon+41 44 633 30 04
E-Mailschindler@ethz.ch
URLhttps://igp.ethz.ch/personen/person-detail.html?persid=143986
DepartementBau, Umwelt und Geomatik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
101-0522-10LDoctoral Seminar Data Science and Machine Learning in Civil, Env. and Geospatial Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 21.
1 KP1SM. J. Van Strien, E. Chatzi, F. Corman, I. Hajnsek, M. A. Kraus, M. Lukovic, V. Ntertimanis, K. Schindler, B. Soja
KurzbeschreibungCurrent research in machine learning and data science within the research fields of the department. The goal is to learn about current research projects at our department, to strengthen our expertise and collaboration with respect to data-driven models and methods, to provide a platform where research challenges can be discussed, and also to practice scientific presentations.
Lernziel- learn about discipline-specific methods and applications of data science in neighbouring fields
- network people and methodological expertise across disciplines
- establish links and discuss connections, common challenges and disciplinespecific differences
- practice presentation and discussion of technical content to a broader, less specialised scientific audience
InhaltCurrent research at D-BAUG will be presented and discussed.
Voraussetzungen / BesonderesThis doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organisers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data
science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.
101-0523-13LFrontiers in Machine Learning Applied to Civil, Env. and Geospatial Engineering (HS22) Belegung eingeschränkt - Details anzeigen 1 KP1GM. J. Van Strien, E. Chatzi, F. Corman, I. Hajnsek, M. A. Kraus, M. Lukovic, V. Ntertimanis, K. Schindler, B. Soja
KurzbeschreibungThis doctoral seminar organised by the D-BAUG platform on data science and machine learning aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).
LernzielStudents will
• Critically read scientific papers on the recent developments in machine learning
• Put the research in context
• Present the contributions
• Discuss the validity of the scientific approach
• Evaluate the underlying assumptions
• Evaluate the transferability/adpatability of the proposed approaches to own research
• (Optionally) implement the proposed approaches.
InhaltWith the increasing amount of data collected in various domains, the importance of data science in many disciplines, such as infrastructure monitoring and management, transportation, spatial planning, structural and environmental engineering, has been increasing. The field is constantly developing further with numerous advances, extensions and modifications.
The course aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).
Each student will select a paper that is relevant for his/her research and present its content in the seminar, putting it into context, analyzing the assumptions, the transferability and generalizability of the proposed approaches. The students will also link the research content of the selected paper to the own research, evaluating the potential of transferring or adapting it. If possible and applicable, the students will also implement the adapted algorithms The students will work in groups of three students, where each of the three students will be reading each other’s selected papers and providing feedback to each other.
Voraussetzungen / BesonderesThis doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organisers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.
103-0251-00LComputational Methods for Geospatial Analysis4 KP4GK. Schindler, J. A. Butt, B. Soja, Y. Xin
KurzbeschreibungIntroduction to mathematical and statistical tools for geospatial data analysis.
LernzielThe goal is to familiarise students with the principles and tools of geospatial data analysis, and to enable them to apply those tools to practical tasks.
InhaltThe course introduces basic methods of geostatistics and geospatial data analysis. Topics include spatial correlation, auto-correlation and the variogram; surface interpolation (kernel-based, kriging, parametric surface models); spatially adaptive filtering (bilinear, guided filter); spatial stochastic processes and random fields; time series models and spatio-temporal analysis.
103-0287-00LImage-based Mapping6 KP2GK. Schindler
KurzbeschreibungApplication of photogrammetry and remote sensing methods for mapping and Earth observation.
LernzielLearn how to apply photogrammetry, image analysis and machine learning to mapping tasks; hands-on experience in implementing automatic image analysis methods, and in judging their results.
InhaltPreprocessing of satellite images, atmospheric correction; extraction of features (radiometric indices, texture descriptors, etc.) from raw image intensities; semantic image segmentation (e.g., cloud masking); physical parameter estimation (e.g., vegetation height); practical deployment of geometric and semantic computer vision and image analysis methods for mapping; assessment of prediction results
Voraussetzungen / Besonderesbasic knowledge of photogrammetry, image processing and machine learning
103-0817-00LGeomatics Seminar Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
4 KP2SK. Schindler, K. W. Axhausen, A. Grêt-Regamey, L. Hurni, M. Raubal, B. Soja, A. Wieser
KurzbeschreibungIntroduction to general scientific working methods and skills in the core fields of geomatics. It includes a literature study, a review of one of the articles, a presentation and a report about the literature study.
LernzielLearn how to search for literature, how to write a scientific report, how to present scientific results, and how to critically read and review a scientific article.
InhaltA list of topics for the literature study are made available at the beginning of the semester. A topic can be selected based on a moodle.
Voraussetzungen / BesonderesAgreement with one of the responsible Professors is necessary.
103-0849-AALMultivariate Statistics and Machine Learning
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RK. Schindler
KurzbeschreibungIntroduction to statistical modelling and machine learning.
LernzielThe goal is to familiarise students with the principles and tools of machine learning, and to enable them to apply them for practical data analysis.
Inhaltmultivariate probability distributions; comparison of distributions; regression; classification; model selection and cross-validation; clustering and density estimation; mixture models; neural networks
Literatur- Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer 2009
- Bishop: Pattern Recognition and Machine Learning, Springer 2006
- Duda, Hart, Stork: Pattern CLassification, Wiley 2012