Oliver Yves Martin: Catalogue data in Spring Semester 2020

Name Dr. Oliver Yves Martin
Address
Institut für Integrative Biologie
ETH Zürich, CHN G 26.2
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 36 60
E-mailoliver.martin@env.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipLecturer

NumberTitleECTSHoursLecturers
551-0001-AALGeneral Biology I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RU. Sauer, O. Y. Martin, A. Widmer
AbstractOrganismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.
First in a series of two lectures given over two semesters for students of agricultural and food sciences, as well as of environmental sciences.
Learning objectiveThe understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.
ContentThe first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogentic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introdution to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates
Lecture notesNo script
LiteratureCampbell et al. (2018) Biology - A Global Approach. 11th Edition (Global Edition
Prerequisites / NoticeThis is a virtual self-study lecture for non-german speakers of the "Allgemeine Biology I (551-0001-00L) lecture. The exam will be written jointly with the participants of this lecture.

Example exam questions will be discussed during the lectures, and old exam questions are kept by the various student organisations. If necessary, please contact Prof. Uwe Sauer (sauer@ethz.ch) for details regarding the exam.
551-0002-00LGeneral Biology II Restricted registration - show details 4 credits4GU. Sauer, K. Bomblies, O. Y. Martin
AbstractBasics of biochemistry (macromolecules, membranes, cellular structures, metabolism), molecular genetics (gene expression and its regulation; from gene to protein), and physiology of higher plants (structure, growth, development, nutrition, transport, reproduction)
Learning objectiveThe understanding of basic concepts of molecular biology and physiology.
ContentHow cells function at the level of molecules and higher structures.
Molecular processes during gene expression.
Plant physiology.

The following Campbell chapters will be covered:

Week 1-5:
5 Biological macromolecules and lipids
7 Cell structure and function
8 Cell membranes
10 Respiration: introduction to metabolism
10 Cell respiration
11 Photosynthetic processes

Week 6-9:
16 Nucleic acids and inheritance
17 Expression of genes
18 Control of gene expression
19 DNA Technology

Week 9-13:
35 Plant Structure and Growth
36 Transport in vascular plants
37 Plant nutrition
38 Reproduction of flowering plants
39 Plants signal and behavior
Lecture notesNo script
LiteratureCampbell, Reece et al: "Biologie" (11th global edition); Pearson 2018.
551-0003-AALGeneral Biology I+II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
7 credits13RU. Sauer, K. Bomblies, O. Y. Martin, A. Widmer
AbstractGeneral Biology I: Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny.

General Biology II: Molecular biology approach to teach the basic principles of biochemistry, cell biology, cgenetics, evolutionary biology and form and function of vacular plants.
Learning objectiveGeneral Biology I: The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life.

General Biology II: The understanding basic concepts of biology: the hierarchy of the structural levels of biological organisation, with particular emphasis on the cell and its molecular functions, the fundamentals of metabolism and molecular genetics, as well as form and function of vascular plants.
ContentGeneral Biology I:
General Biology I focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34.

Week 1-7 by Alex Widmer, Chapters 12-25
12 Cell biology Mitosis
13 Genetics Sexual life cycles and meiosis
14 Genetics Mendelian genetics
15 Genetics Linkage and chromosomes
20 Genetics Evolution of genomes
21 Evolution How evolution works
22 Evolution Phylogentic reconstructions
23 Evolution Microevolution
24 Evolution Species and speciation
25 Evolution Macroevolution

Week 8-14 by Oliver Martin, Chapters 26-34
26 Diversity of Life Introdution to viruses
27 Diversity of Life Prokaryotes
28 Diversity of Life Origin & evolution of eukaryotes
29 Diversity of Life Nonvascular&seedless vascular plants
30 Diversity of Life Seed plants
31 Diversity of Life Introduction to fungi
32 Diversity of Life Overview of animal diversity
33 Diversity of Life Introduction to invertebrates
34 Diversity of Life Origin & evolution of vertebrates


General Biology II: The structure and function of biomacromolecules; basics of metabolism; tour of the cell; membrane structure and function; basic energetics of cellular processes; respiration, photosynthesis; cell cycle, from gene to protein; structure and growth of vascular plants, resource acquisition and transport, soil and plant nutrition.

Specifically the following Campbell chapters will be covered:
3 Biochemistry Chemistry of water
4 Biochemistry Carbon: the basis of molecular diversity
5 Biochemistry Biological macromolecules and lipids
7 Cell biology Cell structure and function
8 Cell biology Cell membranes
10 Cell biology Respiration: introduction to metabolism
10 Cell biology Cell respiration
11 Cell biology Photosynthetic processes
16 Genetics Nucleic acids and inheritance
17 Genetics Expression of genes
18 Genetics Control of gene expression
19 Genetics DNA Technology
35 Plant structure&function Plant Structure and Growth
36 Plant structure&function Transport in vascular plants
37 Plant structure&function Plant nutrition
38 Plant structure&function Reproduction of flowering plants
39 Plant structure&function Plants signal and behavior
Lecture notesNo script
LiteratureCampbell et al. (2018) Biology - A Global Approach. 11th Edition (Global Edition)
Prerequisites / NoticeBasic general and organic chemistry


This is a virtual self-study lecture for non-German speakers of the "Allgemeine Biology I (551-0001-00L) and "Allgemeine Biology II (551-0002-00L) lectures. The exam will be written jointly with the participants of this lecture.
551-0106-00LFundamentals of Biology IB Information 5 credits5GA. Wutz, J. Alexander, O. Y. Martin, E. B. Truernit, S. Wielgoss, S. C. Zeeman
AbstractThis course is an introduction into the basic principles of evolution, diversity, animal/plant form and function, and ecology.
Learning objectiveIntroduction into aspects of modern biology and fundamental biological concepts.
ContentThe course is divided into distinct chapters
1. Mechanisms of evolution.
2. The evolutionary history of biological diversity (bacteria and archea, protists, plants and animals).
3. Plant form and function (growth and development, nutrient and resource acquisition, reproduction and environmental responses).
4. Animal form and function (nutrition, immune system, hormones, reproduction, nervous system and behaviour).
5. Ecology (population ecology, community ecology, ecosystems and conservation ecology).
Lecture notesNo script
LiteratureThis course is based on the textbook 'Biology' (Campbell, Reece, 9th edition). The structure of the course follows that of the book. It is recommended to purchase the English version.
Prerequisites / NoticePart of the contents of the book need to be learned through independent study.