Thomas Hans Willwacher: Catalogue data in Autumn Semester 2021 |
Name | Prof. Dr. Thomas Hans Willwacher |
Field | Mathematics |
Address | Professur für Mathematik ETH Zürich, HG G 27.5 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 30 87 |
thomas.willwacher@math.ethz.ch | |
URL | http://www.math.ethz.ch/~wilthoma |
Department | Mathematics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
401-2303-00L | Complex Analysis | 6 credits | 3V + 2U | T. H. Willwacher | |
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | ||||
Objective | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | ||||
Literature | B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | ||||
401-5330-00L | Talks in Mathematical Physics ![]() | 0 credits | 1K | A. Cattaneo, G. Felder, M. Gaberdiel, G. M. Graf, T. H. Willwacher | |
Abstract | Research colloquium | ||||
Objective | |||||
406-2303-AAL | Complex Analysis Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 6 credits | 13R | T. H. Willwacher | |
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, conformal mappings, Riemann mapping theorem. | ||||
Objective | |||||
Literature | L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. R.Remmert: Theory of Complex Functions.. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publication |