Alexander Caspar: Katalogdaten im Herbstsemester 2019

NameHerr Dr. Alexander Caspar
Adresse
Dep. Mathematik
ETH Zürich, HG E 63.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 68 91
E-Mailalexander.caspar@math.ethz.ch
URLhttp://www.math.ethz.ch/~caspara
DepartementMathematik
BeziehungDozent

NummerTitelECTSUmfangDozierende
401-0291-00LMathematik I Information Belegung eingeschränkt - Details anzeigen 6 KP4V + 2UA. Caspar
KurzbeschreibungMathematik I/II ist eine Einführung in die ein- und mehrdimensionale Analysis
und die Lineare Algebra unter besonderer Betonung von Anwendungen
in den Naturwissenschaften.
LernzielDie Studierenden

+ verstehen Mathematik als Sprache zur Modellbildung und als Werkzeug zur Lösung
angewandter Probleme in den Naturwissenschaften.
+ können Entwicklungsmodelle analysieren, Lösungen qualitativ beschreiben oder
allenfalls explizit berechnen:
diskret/kontinuierlich in Zeit, Ebene und Raum.
+ können Beispiele und konkrete arithmetische und geometrische Situationen
der Anwendungen interpretieren und bearbeiten, auch mit Hilfe von
Computeralgebrasystemen.
Inhalt## Eindimensionale diskrete Entwicklungen ##
- linear, exponentiell, begrenzt, logistisch
- Fixpunkte, diskrete Veränderungsrate
- Folgen und Grenzwerte

## Funktionen in einer Variablen ##
- Reproduktion, Fixpunkte
- Periodizität
- Stetigkeit

## Differentialrechnung (I) ##
- Veränderungsrate/-geschwindigkeit
- Differentialquotient und Ableitungsfunktion
- Anwendungen der Ableitungsfunktion

## Integralrechnung (I) ##
- Stammfunktionen
- Integrationstechniken

## Gewöhnliche Differentialgleichungen (I) ##
- Qualitative Beschreibung an Beispielen:
Beschränkt, Logistisch, Gompertz
- Stationäre Lösungen
- Lineare DGL 1. Ordnung
- Trennung der Variablen

## Lineare Algebra ##
- Erste Arithmetische Aspekte
- Matrizenrechnung
- Eigenwerte / -vektoren
- Quadratische LGS und Determinante
SkriptIn Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir
wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem
Vademecum zusammen.

Dabei gilt:

* Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen!
* Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen
ihren Mehrwert.
* Details entwickeln wir in den Vorlesungen und den Übungen, um die hier
bestehenden Lücken zu schliessen.
* Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln.
LiteraturSiehe auch Lernmaterial > Literatur

**Th. Wihler**
Mathematik für Naturwissenschaften, 2 Bände:
Einführung in die Analysis, Einführung in die Lineare Algebra;
Haupt-Verlag Bern, UTB.

**H. H. Storrer**
Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser.
Via ETHZ-Bibliothek:
https://link.springer.com/book/10.1007/978-3-0348-8598-0

**Ch. Blatter**
Lineare Algebra; VDF
auch als [pdf](<https://people.math.ethz.ch/~blatter/linalg.pdf>)
Voraussetzungen / Besonderes## Übungen und Prüfungen ##
+ Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil
der Lehrveranstaltung.
+ Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten
und zur Korrektur einreichen.
+ Der Prüfungsstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für
eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben
unerlässlich.
401-0293-99LMathematik III (Supplement)
Muss zusammen mit "Mathematik III" (401-0293-00L) belegt werden.
1 KP1AA. Caspar, N. Hungerbühler
KurzbeschreibungModellbildung, Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und der Theorie der gewöhnlichen Differentialgleichungen, Einführung in die Systemanalyse. Die Studierenden erarbeiten zudem eine Unterrichtssequenz.
LernzielDie Studierenden kennen die wesentlichen Elemente der mathematischen Modellierung. Sie sind in der Lage, Modelle zu erstellen und mathematisch zu diskutieren. Sie können selbständig Unterrichtssequenzen zur Modellierung entwickeln.
Inhalt- Modellbildung
- Lineare Modelle:
Vektorräume,
Normalformen,
Lösungsraum eines Linearen DGL-Systems
- Qualitative Aussagen, Nichtlineare Modelle:
Stabilität für eine DGL 1.Ordnung, für allgemeine DGL-Systeme
- Modelle in Raum und Zeit:
Partielle DGL,
Fourier-Reihe, -Transformation,
Laplace-Operator
LiteraturImboden, D. and S. Koch, Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag (2008).
Voraussetzungen / BesonderesGrundvorlesungen zur Analysis