Robert Weismantel: Katalogdaten im Frühjahrssemester 2018

NameHerr Prof. Dr. Robert Weismantel
LehrgebietMathematik (Operations Research)
Adresse
Institut für Operations Research
ETH Zürich, HG G 21.5
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 48 15
E-Mailrobert.weismantel@ifor.math.ethz.ch
URLhttps://math.ethz.ch/ifor/groups/weismantel_group/robert-weismantel.html
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-3903-11LGeometric Integer Programming6 KP2V + 1UR. Weismantel
KurzbeschreibungInteger programming is the task of minimizing a linear function over all the integer points in a polyhedron. This lecture introduces the key concepts of an algorithmic theory for solving such problems.
LernzielThe purpose of the lecture is to provide a geometric treatment of the theory of integer optimization.
InhaltKey topics are:
- lattice theory and the polynomial time solvability of integer optimization problems in fixed dimension,
- the theory of integral generating sets and its connection to totally dual integral systems,
- finite cutting plane algorithms based on lattices and integral generating sets.
Skriptnot available, blackboard presentation
LiteraturBertsimas, Weismantel: Optimization over Integers, Dynamic Ideas 2005.
Schrijver: Theory of linear and integer programming, Wiley, 1986.
Voraussetzungen / Besonderes"Mathematical Optimization" (401-3901-00L)
401-5900-00LOptimization Seminar Information 0 KP1KR. Weismantel, R. Zenklusen
KurzbeschreibungLectures on current topics in optimization.
LernzielThis lecture series introduces graduate students to ongoing research activities (including applications) in the domain of optimization.
InhaltThis seminar is a forum for researchers interested in optimization theory and its applications. Speakers, invited from both academic and non-academic institutions, are expected to stimulate discussions on theoretical and applied aspects of optimization and related subjects. The focus is on efficient (or practical) algorithms for continuous and discrete optimization problems, complexity analysis of algorithms and associated decision problems, approximation algorithms, mathematical modeling and solution procedures for real-world optimization problems in science, engineering, industries, public sectors etc.