David N. Bresch: Catalogue data in Spring Semester 2019

Name Prof. Dr. David N. Bresch
Name variantsDavid N. Bresch
David Bresch
David Niklaus Bresch
FieldWeather and Climate Risks
Address
Professur Wetter- und Klimarisiken
ETH Zürich, CHN K 73.2
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 77 87
E-maildbresch@ethz.ch
URLhttps://wcr.ethz.ch/
DepartmentEnvironmental Systems Science
RelationshipFull Professor

NumberTitleECTSHoursLecturers
364-1058-00LRisk Center Seminar Series Restricted registration - show details
Number of participants limited to 50.
0 credits2SA. Bommier, D. Basin, D. N. Bresch, L.‑E. Cederman, P. Cheridito, H. Gersbach, H. R. Heinimann, M. Larsson, G. Sansavini, F. Schweitzer, D. Sornette, B. Stojadinovic, B. Sudret, U. A. Weidmann, S. Wiemer, M. Zeilinger, R. Zenklusen
AbstractThis course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling and governing complex socio-economic systems, and managing risks and crises. Students and other guests are welcome.
Learning objectiveParticipants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models and approaches for open problems, to analyze them with computers or other means, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level.
ContentThis course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the seminar. Students and other guests are welcome.
Lecture notesThere is no script, but the sessions will be recorded and be made available. Transparencies of the presentations may be put on the course webpage.
LiteratureLiterature will be provided by the speakers in their respective presentations.
Prerequisites / NoticeParticipants should have relatively good scientific, in particular mathematical skills and some experience of how scientific work is performed.
651-4095-01LColloquium Atmosphere and Climate 1 Information Restricted registration - show details 1 credit1KC. Schär, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, H. Joos, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Learning objectiveThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Prerequisites / NoticeTo acquire credit points for this colloquium, please visit the course's web page and sign up for one of the groups.
651-4095-02LColloquium Atmosphere and Climate 2 Information Restricted registration - show details 1 credit1KC. Schär, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, H. Joos, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Learning objectiveThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Prerequisites / NoticeTo acquire credit points for this colloquium, please visit the course's web page and sign up for one of the groups.
651-4095-03LColloquium Atmosphere and Climate 3 Information Restricted registration - show details 1 credit1KC. Schär, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, H. Joos, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Learning objectiveThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Prerequisites / NoticeTo acquire credit points for this colloquium, please visit the course's web page and sign up for one of the groups.
701-0650-00LRisk Analysis and Management3 credits2GA. Patt, D. N. Bresch, J. Jörin
AbstractThis course introduced students to principles of quantitative risk analysis, across a wide variety of environmental areas including weather and climate, natural hazards, and toxic substances. It also introduces them to established practices of risk management, including regulatory approaches, insurance, and contingency planning.
Learning objective- Competence in applying methods of quantitative risk analysis.
- Understanding of common approaches towards risk management.
- Understanding of the importance of risk and uncertainty in decision- and policy-making.
- Ability to communicate risk information clearly and effectively.
ContentStatistics for risk analysis; Monte Carlo simulation; toxicology and epidemiology; exposure assessment; fault tree analysis; risk in decision-making; risk perception and communication; loss spreading and insurance; mitigating natural hazard losses; risk and climate change policy.
Prerequisites / Noticenone
701-1252-00LClimate Change Uncertainty and Risk: From Probabilistic Forecasts to Economics of Climate Adaptation3 credits2V + 1UD. N. Bresch, R. Knutti
AbstractThe course introduces the concepts of predictability, probability, uncertainty and probabilistic risk modelling and their application to climate modeling and the economics of climate adaptation.
Learning objectiveStudents will acquire knowledge in uncertainty and risk quantification (probabilistic modelling) and an understanding of the economics of climate adaptation. They will become able to construct their own uncertainty and risk assessment models (in Python), hence basic understanding of scientific programming forms a prerequisite of the course.
ContentThe first part of the course covers methods to quantify uncertainty in detecting and attributing human influence on climate change and to generate probabilistic climate change projections on global to regional scales. Model evaluation, calibration and structural error are discussed. In the second part, quantification of risks associated with local climate impacts and the economics of different baskets of climate adaptation options are assessed – leading to informed decisions to optimally allocate resources. Such pre-emptive risk management allows evaluating a mix of prevention, preparation, response, recovery, and (financial) risk transfer actions, resulting in an optimal balance of public and private contributions to risk management, aiming at a more resilient society.
The course provides an introduction to the following themes:
1) basics of probabilistic modelling and quantification of uncertainty from global climate change to local impacts of extreme events
2) methods to optimize and constrain model parameters using observations
3) risk management from identification (perception) and understanding (assessment, modelling) to actions (prevention, preparation, response, recovery, risk transfer)
4) basics of economic evaluation, economic decision making in the presence of climate risks and pre-emptive risk management to optimally allocate resources
Lecture notesPowerpoint slides will be made available
Literature-
Prerequisites / NoticeHands-on experience with probabilistic climate models and risk models will be acquired in the tutorials; hence basic understanding of scientific programming forms a prerequisite of the course. Basic understanding of the climate system, e.g. as covered in the course 'Klimasysteme' is required.

Examination: graded tutorials during the semester (benotete Semesterleistung)
869-0110-00LManaging Large-Scale Risks Through Policy and Private Sector Measures Restricted registration - show details
Number of participants limited to11.

Only for MAS in Science, Technology and Policy and Science, Technology and Policy MSc.
2 credits1GD. N. Bresch
AbstractParticipants learn about the key roles of public and private actors in dealing with large-scale risks, and arrangements such as public private partnerships (PPP) in managing risk. Participants gain insights into how and to what extent firms and industries (need to) consider and manage environmental risks.
Learning objectiveParticipants learn about the key roles of public and private actors in dealing with large-scale risks, and arrangements such as public private partnerships (PPP) in managing risk. Participants gain insights into how and to what extent firms and industries (need to) consider and manage environmental risks.
Participants will broaden their understanding of the issue of climate change, which will be used as the illustrative example both to set the theoretical frame as well as for the practical exercises, like analyzing company reporting according to the recommendations of the task force for climate-related financial disclosure (TCFD).
ContentIn the course module “Managing Large-Scale Risks Through Policy and Private Sector Measures”, participants learn about the key roles of public and private actors in dealing with large-scale risks. Participants gain insights into how and to what extent firms and industries (need to) consider and manage environmental risks. After a general introduction into both the topic and frameworks private actros are employing to deal with them, we will look into two real-world case studies - involving participants in some group work to simulate the elicitation of such a case in a negotiation setting between different stakeholders. The second day, Martin Weymann, Head Sustainability, Emerging & Political Risk Management, Director, Swiss Re, will join as a judge for the second negotiation round and share his views and experiences dealing with such cases on an almost daily basis. For the reminder of the second day, we will distill key insights from the cases negotiated and look into company reporting according to the recommendations of the task force for climate-related financial disclosure (TCFD).