Manfred Einsiedler: Catalogue data in Autumn Semester 2021

Award: The Golden Owl
Name Prof. Dr. Manfred Einsiedler
Professur für Mathematik
ETH Zürich, HG G 64.2
Rämistrasse 101
8092 Zürich
Telephone+41 44 632 31 84
RelationshipFull Professor

401-1261-07LAnalysis I: One Variable Information 10 credits6V + 3UM. Einsiedler
AbstractIntroduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.
ObjectiveThe ability to work with the basics of calculus in a mathematically rigorous way.
LiteratureH. Amann, J. Escher: Analysis I

J. Appell: Analysis in Beispielen und Gegenbeispielen

R. Courant: Vorlesungen über Differential- und Integralrechnung

O. Forster: Analysis 1

H. Heuser: Lehrbuch der Analysis

K. Königsberger: Analysis 1

W. Walter: Analysis 1

V. Zorich: Mathematical Analysis I (englisch)

A. Beutelspacher: "Das ist o.B.d.A. trivial"

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
401-5370-00LErgodic Theory and Dynamical Systems Information 0 credits1KM. Akka Ginosar, M. Einsiedler, University lecturers
AbstractResearch colloquium
401-5530-00LGeometry Seminar Information 0 credits1KM. Burger, M. Einsiedler, P. Feller, A. Iozzi, U. Lang, University lecturers
AbstractResearch colloquium
406-2005-AALAlgebra I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
12 credits26RM. Burger, M. Einsiedler
AbstractIntroduction and development of some basic algebraic structures - groups, rings, fields including Galois theory, representations of finite groups, algebras.

The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
ContentBasic notions and examples of groups;
Subgroups, Quotient groups and Homomorphisms,
Group actions and applications

Basic notions and examples of rings;
Ring Homomorphisms,
ideals, and quotient rings, rings of fractions
Euclidean domains, Principal ideal domains, Unique factorization

Basic notions and examples of fields;
Field extensions, Algebraic extensions, Classical straight edge and compass constructions

Fundamentals of Galois theory
Representation theory of finite groups and algebras
LiteratureJoseph J. Rotman, "Advanced Modern Algebra" third edition, part 1,
Graduate Studies in Mathematics,Volume 165
American Mathematical Society