Name | Prof. Dr. Manfred Einsiedler |
Field | Mathematics |
Address | Professur für Mathematik ETH Zürich, HG G 64.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 31 84 |
manfred.einsiedler@math.ethz.ch | |
URL | http://www.math.ethz.ch/~einsiedl |
Department | Mathematics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-1373-74L | Reading Course: Homogeneous Dynamics | 3 credits | 6A | M. Einsiedler | ||||||||||||||||||||||||||||||||
Abstract | The reading course will focus on some basics of Ergodic Theory and homogeneous dynamics with the aim to understand the proofs of (special cases) of Ratner's theorems. | |||||||||||||||||||||||||||||||||||
Learning objective | For understanding Ratner's theorems we will need -) conditional measures, -) entropy theory for measure preserving systems -) basics of homogeneous dynamics -) understanding entropy in terms of leafwise measures -) Ratner's shearing method to obtain additional invariance | |||||||||||||||||||||||||||||||||||
Lecture notes | We will use lecture notes by M. Einsiedler and T. Ward, respectively also material by M. Einsiedler and E. Lindenstrauss. | |||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||
401-3005-00L | Mathematical Writing | 4 credits | 2G | M. Einsiedler | ||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||
Content | The content includes (tentative): ◦ General guidelines for writing math papers, structure, format etc. ◦ Mathematical Language ◦ Ethics ◦ Good and bad examples ◦ Technical aspects (LaTeX, how to look up and format citations etc.) ◦ Possibly a component contributed by the ETH language center on language and presentation skills. ◦ Exercises or small practical assignments | |||||||||||||||||||||||||||||||||||
401-4461-74L | Reading Course: Unitary Representations | 3 credits | 6A | M. Einsiedler | ||||||||||||||||||||||||||||||||
Abstract | The students will understand the basic theory of unitary representations as well as the classification of a few unitary duals. | |||||||||||||||||||||||||||||||||||
Learning objective | This unit will cover the basic theory of unitary representations, building on a solid foundation of functional analysis. After this particular cases of concrete groups will be studied: abelian groups, semi-direct products, and SL(2,R). The latter has many connections to other areas of mathematics, which will be highlighted along the way. The goal is to understand this initial part of the theory. | |||||||||||||||||||||||||||||||||||
Lecture notes | Joint book project with Tom Ward, see https://tbward0.wixsite.com/books/unitary | |||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A solid understanding of measure theory, complex analysis, functional analysis are necessary. Prior experience with topological groups would be useful too. | |||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||
401-5010-00L | Ethics and Scientific Integrity for Doctoral Students at D-MATH ![]() | 1 credit | 1R | M. Einsiedler, E. Kowalski | ||||||||||||||||||||||||||||||||
Abstract | This course (e-learning module and face-to-face sessions) equips doctoral students with knowledge and tools to recognize, discuss and address ethical issues of their research. | |||||||||||||||||||||||||||||||||||
Learning objective | Doctoral students learn how to identify, analyse and address ethical issues in their own scientific research. In addition, they will reflect on their professional role as scientific researchers. | |||||||||||||||||||||||||||||||||||
Content | Part I: A self-paced e-learning course in Moodle consisting of several modules on the foundations of ethics in research. Part II: Two face-to-face sessions which focus on mathematics-specific aspects. | |||||||||||||||||||||||||||||||||||
Prerequisites / Notice | For doctoral students at D-MATH only. It is recommended to complete Part I (Moodle course) before Part II (face-to-face sessions). | |||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||
401-5370-00L | Ergodic Theory and Dynamical Systems ![]() | 0 credits | 1K | M. Akka Ginosar, M. Einsiedler, University lecturers | ||||||||||||||||||||||||||||||||
Abstract | Research colloquium | |||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||
401-5530-00L | Geometry Seminar ![]() | 0 credits | 1K | M. Burger, M. Einsiedler, U. Lang, L. Lewark, C. Urech, University lecturers, further lecturers | ||||||||||||||||||||||||||||||||
Abstract | Research colloquium | |||||||||||||||||||||||||||||||||||
Learning objective |