Manfred Einsiedler: Katalogdaten im Herbstsemester 2018

Auszeichnung: Die Goldene Eule
NameHerr Prof. Dr. Manfred Einsiedler
LehrgebietMathematik
Adresse
Professur für Mathematik
ETH Zürich, HG G 64.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 31 84
E-Mailmanfred.einsiedler@math.ethz.ch
URLhttp://www.math.ethz.ch/~einsiedl
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-3110-68LFractal Geometry Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.
Registration to the seminar will only be effective once confirmed by the organisers. Please contact roland.prohaska@math.ethz.ch.
4 KP2SM. Einsiedler, weitere Referent/innen
KurzbeschreibungIntroductory seminar about the mathematical foundations of fractal geometry and its applications in various areas of mathematics
Lernziel
InhaltFoundations:
- classical examples
- notions of dimension and their calculation
- local structure
- projections, products, intersections

Possible Applications:
- Dynamical Systems: iterated function systems, self-similar and self-affine sets
- Pure Mathematics: the Kakeya problem, fractal groups and rings, graphs of functions
- Complex Dynamics: Julia sets and the Mandelbrot set, Vitushkin's conjecture
- Number Theory: distribution of digits, continued fractions, Diophantine approximation
- Probability Theory: random fractals, Brownian motion
LiteraturKenneth Falconer: Fractal Geometry, Mathematical Foundations and Applications.
Voraussetzungen / BesonderesPrerequisites: Content of the first two years of the ETH Bachelor program in mathematics, especially measure theory and topology. Some applications require complex analysis and probability theory.

In order to obtain the 4 credit points, each student is expected to give two 1h-talks and regularly attend the seminar.
401-3461-00LFunctional Analysis I Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar.
10 KP4V + 1UM. Einsiedler
KurzbeschreibungBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces; Fourier transform and applications.
LernzielAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteraturWe will be using the book
Functional Analysis, Spectral Theory, and Applications
by Manfred Einsiedler and Thomas Ward
and available by SpringerLink.

Other useful, and recommended references include the following:

Lecture Notes on "Funktionalanalysis I" by Michael Struwe

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Elias M. Stein and Rami Shakarchi. Functional analysis (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Peter D. Lax. Functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
Voraussetzungen / BesonderesSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces).
401-5370-00LErgodic Theory and Dynamical Systems Information 0 KP1KM. Einsiedler, Uni-Dozierende, weitere Dozierende
KurzbeschreibungResearch colloquium
Lernziel
401-5530-00LGeometry Seminar Information 0 KP1KM. Burger, M. Einsiedler, A. Iozzi, U. Lang, A. Sisto, Uni-Dozierende
KurzbeschreibungResearch colloquium
Lernziel
406-3461-AALFunctional Analysis I
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
10 KP21RM. Einsiedler
KurzbeschreibungBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces; Fourier transform and applications.
LernzielAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteraturWe will be using the book
Functional Analysis, Spectral Theory, and Applications
by Manfred Einsiedler and Thomas Ward
and available by SpringerLink.

Other useful, and recommended references include the following:

Lecture Notes on "Funktionalanalysis I" by Michael Struwe

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Elias M. Stein and Rami Shakarchi. Functional analysis (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Peter D. Lax. Functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.