Manfred Einsiedler: Katalogdaten im Herbstsemester 2015

Auszeichnung: Die Goldene Eule
NameHerr Prof. Dr. Manfred Einsiedler
LehrgebietMathematik
Adresse
Professur für Mathematik
ETH Zürich, HG G 64.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 31 84
E-Mailmanfred.einsiedler@math.ethz.ch
URLhttp://www.math.ethz.ch/~einsiedl
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-3225-00LIntroduction to Lie Groups8 KP4GM. Einsiedler
KurzbeschreibungTopological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups.
LernzielThe goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it.
LiteraturA. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser)
A.Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73)
F.Warner: "Foundations of differentiable manifolds and Lie groups" (Springer)
H. Samelson: "Notes on Lie algebras" (Springer, '90)
S.Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78)
A.Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press)
Voraussetzungen / BesonderesTopology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester.

Course webpage: http://www.math.ethz.ch/education/bachelor/lectures/hs2014/math/introlg
401-4460-62LFunctional Analysis III Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 12
4 KP2SM. Einsiedler
KurzbeschreibungWe will discuss various additional topics in Functional Analysis: unitary representations of abelian and non-abelian groups, Choquet's theorem on extremal points, distributions, amenability and property (T).
Lernziel
Voraussetzungen / BesonderesPrerequisites: Functional Analysis I and II
401-5530-00LGeometry Seminar Information 0 KP1KM. Burger, M. Einsiedler, A. Iozzi, U. Lang, V. Schroeder, A. Sisto
KurzbeschreibungResearch colloquium
Lernziel