Name | Herr Prof. Dr. Manfred Einsiedler |
Lehrgebiet | Mathematik |
Adresse | Professur für Mathematik ETH Zürich, HG G 64.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 31 84 |
manfred.einsiedler@math.ethz.ch | |
URL | http://www.math.ethz.ch/~einsiedl |
Departement | Mathematik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-3225-00L | Introduction to Lie Groups | 8 KP | 4G | M. Einsiedler | |
Kurzbeschreibung | Topological groups and Haar measure. Definition of Lie groups, examples of local fields and examples of discrete subgroups; basic properties; Lie subgroups. Lie algebras and relation with Lie groups: exponential map, adjoint representation. Semisimplicity, nilpotency, solvability, compactness: Killing form, Lie's and Engel's theorems. Definition of algebraic groups and relation with Lie groups. | ||||
Lernziel | The goal is to have a broad though foundational knowledge of the theory of Lie groups and their associated Lie algebras with an emphasis on the algebraic and topological aspects of it. | ||||
Literatur | A. Knapp: "Lie groups beyond an Introduction" (Birkhaeuser) A.Sagle & R. Walde: "Introduction to Lie groups and Lie algebras" (Academic Press, '73) F.Warner: "Foundations of differentiable manifolds and Lie groups" (Springer) H. Samelson: "Notes on Lie algebras" (Springer, '90) S.Helgason: "Differential geometry, Lie groups and symmetric spaces" (Academic Press, '78) A.Knapp: "Lie groups, Lie algebras and cohomology" (Princeton University Press) | ||||
Voraussetzungen / Besonderes | Topology and basic notions of measure theory. A basic understanding of the concepts of manifold, tangent space and vector field is useful, but could also be achieved throughout the semester. Course webpage: http://www.math.ethz.ch/education/bachelor/lectures/hs2014/math/introlg | ||||
401-4460-62L | Functional Analysis III Maximale Teilnehmerzahl: 12 | 4 KP | 2S | M. Einsiedler | |
Kurzbeschreibung | We will discuss various additional topics in Functional Analysis: unitary representations of abelian and non-abelian groups, Choquet's theorem on extremal points, distributions, amenability and property (T). | ||||
Lernziel | |||||
Voraussetzungen / Besonderes | Prerequisites: Functional Analysis I and II | ||||
401-5530-00L | Geometry Seminar | 0 KP | 1K | M. Burger, M. Einsiedler, A. Iozzi, U. Lang, V. Schroeder, A. Sisto | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel |