Markus Rothacher: Catalogue data in Spring Semester 2021

Award: The Golden Owl
Name Prof. em. Dr. Markus Rothacher
FieldMathematical and Physical Geodesy
Address
I. f. Geodäsie u. Photogrammetrie
ETH Zürich, HPV G 52
Robert-Gnehm-Weg 15
8093 Zürich
SWITZERLAND
Telephone+41 44 633 33 75
E-mailmarkus.rothacher@ethz.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
103-0126-AALGeodetic Reference Systems
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RM. Rothacher
AbstractFundamentals and theory of geodetic reference systems and frames. Introduction to current international systems as well as to systems for the Swiss national geodetic survey.
ObjectiveProvision of fundamental knowledge and theory to get familiar with the applications of geodetic reference systems. Special emphasis will be placed on international global systems as well as on the systems of the Swiss national geodetic survey.
ContentVarious coordinate systems and transformations;
reference systems and frames (inertial, Earth-fixed, topocentric) and associated transformations between the systems;
introduction to Earth rotation theory;
time systems;
Swiss national geodetic survey
Lecture notesWill be provided on ILIAS
LiteratureWill be provided on ILIAS
103-0135-01LGlobal Satellite Navigation Systems3 credits3GM. Rothacher
AbstractGPS, GLONASS, Galileo, COMPASS, QZSS als GNSS. Systemkomponenten, Signalstruktur, Referenz- und Zeitsysteme und Beobachtungsgleichungen. Differenzbildung, Linearkombinationen. Satellitenbahnen und -uhren, troposphärische und ionosphärische Refraktion, Antennenphasenzentren, Multipath und Messrauschen. Beobachtungsverfahren und Mehrdeutigkeitslösung. Referenzstationsnetze und Dienste.
Objective• Erlernen der theoretischen und praktischen Grundlagen
der verschiedenen GNSS
• Verstehen der wichtigsten Fehlerquellen und der unterschiedlichen
Beobachtungsverfahren
• Erkennen von Anwendungen der GNSS in der Vermessung,
Positionierung, Navigation, GIS, im Geomonitoring und
in den Erd- und Umweltwissenschaften
Content• Überblick über die verschiedenen GNSS (GPS, GLONASS, Galileo, Beidou,
QZSS und INRSS)
• Systemkomponenten, Signalstrukturen, Referenz- und Zeitsystemen und Beobachtungsgleichungen
für Pseudorange- und Phasenmessungen der GNSS
• Bildung von Differenzen und Linearkombinationen der
ursprünglichen Beobachtungen
• Fehlerquellen: Satellitenbahnen und -uhren, troposphärische und ionosphärische
Refraktion, Antennenphasenzentren, relativistische Einflüsse, Mehrwegeffekte
und Messrauschen
• Einblick in die Bedeutung der speziellen und allgemeinen Relativitätstheorie
für die GNSS
• Auswertestrategien und Beobachtungsverfahren
sowie Methoden zur Lösung der Phasenmehrdeutigkeiten
• Referenzstationsnetze und Dienste
• Viele Anwendungsbeispiele
• Praktische und rechnerische Übungen für die Erfassung
und Auswertung der GNSS-Messungen
103-0157-00LPhysical Geodesy and Geodynamics4 credits3GM. Rothacher
AbstractNewton's Laws and accelerated reference systems; gravitation and potential theory, gravity and normal gravity; linear model of the gravity field; gravity reductions, solution of the geodetic boundary value problem; geoid computation.
ObjectiveObtain knowledge in Physical Geodesy as a fundamental topic forming the basis for Geomatics and Geodynamics. Acquire skills in calculus covered in Physical Geodesy.
ContentNewton's laws and accelerated reference systems
- Newton's laws
- Inertial systems
- Accelerated systems and fictitious forces
Gravitation and potential theory
- Newton’s law of gravitation
- Integral and differential formulas of potential theory
Gravity
Normal gravity
Linear model of the gravity field
- Disturbances of the gravity field
- Anomalies of the gravity field
Gravity reductions
Solution of the geodetic boundary value problem
- Stokes’ formula
- Vening-Meinesz formula
- Series representation of gravity field functionals
Geoid computation
- Application of the integration formula by Stokes
- Geoid computations with spherical harmonics functions
- Gravity anomalies and spherical harmonics functions
- Geoid computation using the combination method
- Signal characteristics of geoid and gravity anomalies
Lecture notesScript exists in English
Prerequisites / NoticePre-Requisite: Basics of Higher Geodesy
103-0178-00LGeodetic Earth Monitoring4 credits3GM. Rothacher, B. Soja
AbstractThe three pillars of geodesy, i.e. the geometry, rotation and gravity field of the Earth contribute to Earth system monitoring and will be considered here. 1) Earth rotation: theory, estimation and interpretation; 2) Gravity field: satellite missions, theory, estimation and interpretation; 3) Geodynamics (geometry): plate tectonics, earthquake cycle, isostasy and uplift rates.
ObjectiveUnderstand the basics of Earth rotation and gravity field theory, with what type of methods they are determined and what they contribute to monitoring the Earth system. Get familiar with the major geodynamic processes within the crust and mantle and how they are being observed and monitored.
ContentPart 1: Earth rotation
- Kinematics of a solid body
- Dynamic Eulerian equations of Earth rotation
- Kinematic Eulerian equations of Earth rotation
- Free rotation of the flattened Earth
- Influence of Sun and Moon, Precession, Nutation
- Earth as an elastic body
- Determination of Earth rotation parameters
- Mass distribution and mass transport affecting Earth rotation
Part 2: Gravity field
- Satellite missions
- Gravity field determination from satellite data
- Geoid computation from terrestrial data
- Combination of satellite and terrestrial gravity fields
- Precision of geoid computations
- Mass distribution and transport affecting the Earth gravity field
Part 3: Geodynamics:
- Plate tectonics theory: including ocean bottom floor magnetism Curie temperature, age of the ocean bottom floor
- Notions on crust material (oceanic/continental)
- Concepts of mantle plumes, mantle convection and mantle flow and evidences supporting them
- Earthquake cycle: elastic rebound theory, strain and stress measurements and measurements in the field during inter-, co- and post-seismic periods
- Isostasy and strength models
- Surface uplift rate applied to continental crust, volcanism, eroded areas.
Lecture notesA script and slides will be made available
LiteratureBeutler G., Methods of Celestial Mechanics. II: Application to Planetary System, Geodynamics and Satellite Geodesy, Springer, ISBN 3-540-40750-2, 2005.

Hofmann-Wellenhof B. and Moritz H., Physical Geodesy, Springer, ISBN 13-978-3-211-33544-4, 2005/2006.

Fowler C.M.R., The Solid Earth: An Introduction to Global Geophysics, Cambridge Univ. Press, ISBN 0-521-38590-3, 2005.
Prerequisites / NoticeRecommended: Basics of Higher Geodesy
Of advantage: Basics of Geodetic Earth Observation
103-0184-AALHigher Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits11RM. Rothacher
AbstractModern methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics.
ObjectiveOverview over the entire spectrum of Higher Geodesy
ContentActual methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy (GPS) and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics.
Lecture notesRothacher, M.: Höhere Geodäsie (deutsch)
103-0187-AALSatellite Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
4 credits3RM. Rothacher
AbstractReference systems, reference frames and coordinate transformations. Earth rotation. Geodetic space techniques GNSS, VLBI, SLR, DORIS and altimetry. Gravitation and gravity field. Satellite orbit computation. Gravity field satellite missions.
Objective- Confidence in the handling of coordinate systems, reference systems and frames and time systems
- Mastering of the calculation of ephemerides for unperturbed satellite orbits
- Solid understanding of the space geodetic techniques and their strengths and weaknesses
- Knowledge of the major processes causing changes in the three pillars of space geodesy (geometry, Earth rotation and Earth's gravity field)
- Knowledge of existing and potential applications of the space geodetic techniques for interdisciplinary tasks (System Earth)
Content- Celestial and terrestrial reference systems and frames, time systems
- Earth rotation as the transformation between celestial and terrestrial reference systems with precession, nutation, sidereal time and polar motion,
- Transformation between Cartesian and ellipsoidal coordinates
- Space geodetic observation techniques: GNSS, VLBI, SLR, DORIS and altimetry
- Gravitational field and gravity field of the Earth, geometry of the gravity field
- Computation of unperturbed satellite orbits
- Determination of the Earth gravity field with satellite missions
Lecture notesSkript M. Rothacher "Satellitengeodäsie"
103-0798-00LGeodetic Project Course Restricted registration - show details
Number of participants limited to 24.
5 credits9PM. Rothacher, K. Schindler, A. Wieser
AbstractField course with practical geodetic projects (3 weeks)
ObjectiveField course with practical geodetic projects (3 weeks)
ContentSingle-handed treatment of current geodetic projects in small teams. Writing of a technical report with description of the project, calculations, results and interpretations. Possibility to continue the work in a master's thesis or project.
Prerequisites / NoticeThe course takes place bezween June 14 and July 9, 2021. Within this period, 2 weeks of fieldwork in Graubünden are planned. Additionally there will be preparatory work and post-processing carried out in Zurich.
103-0838-00LGeomonitoring and Geosensors4 credits3GA. Wieser, M. Rothacher
AbstractThis course provides an introduction to sensors, measurement techniques and analysis methods for geodetic monitoring of natural structures of local to regional scale like landslides, rock falls, volcanoes and tsunamis. Several case studies will highlight the application of the presented technologies.
ObjectiveUnderstanding the core challenges and proven approaches to monitoring of local and regional deformation; gaining an overview of established measurement and data processing techniques for monitoring geometric changes.
ContentIntroduction to geomonitoring; sensors and measurement technologies: GNSS, TPS, TLS, GB-SAR, geosensor networks, geotechnical monitoring sensors; areal and point-wise deformation monitoring; congruency tests, network deformation analysis, sensitivity, regression and jump detection; estimation of strain tensor, block analysis; case studies.
Lecture notesThe lecture slides and further literature will be made available on the course webpage.
Prerequisites / NoticeStudents should be familiar with geodetic networks, parameter estimation, GNSS and Engineering Geodesy. Students who have not taken the related courses of the ETH curriculum (or equivalent courses at another university) but want to take this course should contact the lecturers beforehand.
103-0850-00LPhysical and Kinematic Geodesy6 credits4GM. Rothacher
AbstractGravity field of the Earth, normal gravity, gravity reductions, reference surfaces and height systems, description of the gravity field by spherical harmonics functions, gravity field measurements, geoid determination, space curves and trajectories, space curves on surfaces, accelerated reference frames and moving measurement platforms, inertial navigation, Kalman filter
ObjectiveErkenntnis, dass ein erdfestes Bezugssystem ein beschleunigtes
Bezugssystem darstellt, das alle Messprozesse beeinflusst; Beherrschen der Grundlagen der physikalischen Geodäsie; Fähigkeit, mit ellipsoidischen und physikalischen Höhen umzugehen und diese zu bestimmen; Kenntnis der Methoden der Geoidbestimmung; Wissen über die Effekte, die auf einer bewegten Messplattform zu beachten sind; Grundkenntnisse in der Trägheitsnavigation und in der Kalman-Filterung
Lecture notesLecture notes are available
103-1184-AALPhysical and Kinematic Geodesy
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits4RM. Rothacher
AbstractModern methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics.
ObjectiveOverview over the entire spectrum of Physical and Kinematic Geodesy