Name | Prof. em. Dr. Markus Rothacher |
Field | Mathematical and Physical Geodesy |
Address | I. f. Geodäsie u. Photogrammetrie ETH Zürich, HPV G 52 Robert-Gnehm-Weg 15 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 33 75 |
markus.rothacher@ethz.ch | |
Department | Civil, Environmental and Geomatic Engineering |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
103-0126-AAL | Geodetic Reference Systems Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 3 credits | 6R | M. Rothacher | |
Abstract | Fundamentals and theory of geodetic reference systems and frames. Introduction to current international systems as well as to systems for the Swiss national geodetic survey. | ||||
Objective | Provision of fundamental knowledge and theory to get familiar with the applications of geodetic reference systems. Special emphasis will be placed on international global systems as well as on the systems of the Swiss national geodetic survey. | ||||
Content | Various coordinate systems and transformations; reference systems and frames (inertial, Earth-fixed, topocentric) and associated transformations between the systems; introduction to Earth rotation theory; time systems; Swiss national geodetic survey | ||||
Lecture notes | Will be provided on ILIAS | ||||
Literature | Will be provided on ILIAS | ||||
103-0135-01L | Global Satellite Navigation Systems | 3 credits | 3G | M. Rothacher | |
Abstract | GPS, GLONASS, Galileo, COMPASS, QZSS als GNSS. Systemkomponenten, Signalstruktur, Referenz- und Zeitsysteme und Beobachtungsgleichungen. Differenzbildung, Linearkombinationen. Satellitenbahnen und -uhren, troposphärische und ionosphärische Refraktion, Antennenphasenzentren, Multipath und Messrauschen. Beobachtungsverfahren und Mehrdeutigkeitslösung. Referenzstationsnetze und Dienste. | ||||
Objective | • Erlernen der theoretischen und praktischen Grundlagen der verschiedenen GNSS • Verstehen der wichtigsten Fehlerquellen und der unterschiedlichen Beobachtungsverfahren • Erkennen von Anwendungen der GNSS in der Vermessung, Positionierung, Navigation, GIS, im Geomonitoring und in den Erd- und Umweltwissenschaften | ||||
Content | • Überblick über die verschiedenen GNSS (GPS, GLONASS, Galileo, Beidou, QZSS und INRSS) • Systemkomponenten, Signalstrukturen, Referenz- und Zeitsystemen und Beobachtungsgleichungen für Pseudorange- und Phasenmessungen der GNSS • Bildung von Differenzen und Linearkombinationen der ursprünglichen Beobachtungen • Fehlerquellen: Satellitenbahnen und -uhren, troposphärische und ionosphärische Refraktion, Antennenphasenzentren, relativistische Einflüsse, Mehrwegeffekte und Messrauschen • Einblick in die Bedeutung der speziellen und allgemeinen Relativitätstheorie für die GNSS • Auswertestrategien und Beobachtungsverfahren sowie Methoden zur Lösung der Phasenmehrdeutigkeiten • Referenzstationsnetze und Dienste • Viele Anwendungsbeispiele • Praktische und rechnerische Übungen für die Erfassung und Auswertung der GNSS-Messungen | ||||
103-0157-00L | Physical Geodesy and Geodynamics | 4 credits | 3G | M. Rothacher | |
Abstract | Newton's Laws and accelerated reference systems; gravitation and potential theory, gravity and normal gravity; linear model of the gravity field; gravity reductions, solution of the geodetic boundary value problem; geoid computation. | ||||
Objective | Obtain knowledge in Physical Geodesy as a fundamental topic forming the basis for Geomatics and Geodynamics. Acquire skills in calculus covered in Physical Geodesy. | ||||
Content | Newton's laws and accelerated reference systems - Newton's laws - Inertial systems - Accelerated systems and fictitious forces Gravitation and potential theory - Newton’s law of gravitation - Integral and differential formulas of potential theory Gravity Normal gravity Linear model of the gravity field - Disturbances of the gravity field - Anomalies of the gravity field Gravity reductions Solution of the geodetic boundary value problem - Stokes’ formula - Vening-Meinesz formula - Series representation of gravity field functionals Geoid computation - Application of the integration formula by Stokes - Geoid computations with spherical harmonics functions - Gravity anomalies and spherical harmonics functions - Geoid computation using the combination method - Signal characteristics of geoid and gravity anomalies | ||||
Lecture notes | Script exists in English | ||||
Prerequisites / Notice | Pre-Requisite: Basics of Higher Geodesy | ||||
103-0178-00L | Geodetic Earth Monitoring | 4 credits | 3G | M. Rothacher, B. Soja | |
Abstract | The three pillars of geodesy, i.e. the geometry, rotation and gravity field of the Earth contribute to Earth system monitoring and will be considered here. 1) Earth rotation: theory, estimation and interpretation; 2) Gravity field: satellite missions, theory, estimation and interpretation; 3) Geodynamics (geometry): plate tectonics, earthquake cycle, isostasy and uplift rates. | ||||
Objective | Understand the basics of Earth rotation and gravity field theory, with what type of methods they are determined and what they contribute to monitoring the Earth system. Get familiar with the major geodynamic processes within the crust and mantle and how they are being observed and monitored. | ||||
Content | Part 1: Earth rotation - Kinematics of a solid body - Dynamic Eulerian equations of Earth rotation - Kinematic Eulerian equations of Earth rotation - Free rotation of the flattened Earth - Influence of Sun and Moon, Precession, Nutation - Earth as an elastic body - Determination of Earth rotation parameters - Mass distribution and mass transport affecting Earth rotation Part 2: Gravity field - Satellite missions - Gravity field determination from satellite data - Geoid computation from terrestrial data - Combination of satellite and terrestrial gravity fields - Precision of geoid computations - Mass distribution and transport affecting the Earth gravity field Part 3: Geodynamics: - Plate tectonics theory: including ocean bottom floor magnetism Curie temperature, age of the ocean bottom floor - Notions on crust material (oceanic/continental) - Concepts of mantle plumes, mantle convection and mantle flow and evidences supporting them - Earthquake cycle: elastic rebound theory, strain and stress measurements and measurements in the field during inter-, co- and post-seismic periods - Isostasy and strength models - Surface uplift rate applied to continental crust, volcanism, eroded areas. | ||||
Lecture notes | A script and slides will be made available | ||||
Literature | Beutler G., Methods of Celestial Mechanics. II: Application to Planetary System, Geodynamics and Satellite Geodesy, Springer, ISBN 3-540-40750-2, 2005. Hofmann-Wellenhof B. and Moritz H., Physical Geodesy, Springer, ISBN 13-978-3-211-33544-4, 2005/2006. Fowler C.M.R., The Solid Earth: An Introduction to Global Geophysics, Cambridge Univ. Press, ISBN 0-521-38590-3, 2005. | ||||
Prerequisites / Notice | Recommended: Basics of Higher Geodesy Of advantage: Basics of Geodetic Earth Observation | ||||
103-0184-AAL | Higher Geodesy Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 5 credits | 11R | M. Rothacher | |
Abstract | Modern methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics. | ||||
Objective | Overview over the entire spectrum of Higher Geodesy | ||||
Content | Actual methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy (GPS) and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics. | ||||
Lecture notes | Rothacher, M.: Höhere Geodäsie (deutsch) | ||||
103-0187-AAL | Satellite Geodesy Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 4 credits | 3R | M. Rothacher | |
Abstract | Reference systems, reference frames and coordinate transformations. Earth rotation. Geodetic space techniques GNSS, VLBI, SLR, DORIS and altimetry. Gravitation and gravity field. Satellite orbit computation. Gravity field satellite missions. | ||||
Objective | - Confidence in the handling of coordinate systems, reference systems and frames and time systems - Mastering of the calculation of ephemerides for unperturbed satellite orbits - Solid understanding of the space geodetic techniques and their strengths and weaknesses - Knowledge of the major processes causing changes in the three pillars of space geodesy (geometry, Earth rotation and Earth's gravity field) - Knowledge of existing and potential applications of the space geodetic techniques for interdisciplinary tasks (System Earth) | ||||
Content | - Celestial and terrestrial reference systems and frames, time systems - Earth rotation as the transformation between celestial and terrestrial reference systems with precession, nutation, sidereal time and polar motion, - Transformation between Cartesian and ellipsoidal coordinates - Space geodetic observation techniques: GNSS, VLBI, SLR, DORIS and altimetry - Gravitational field and gravity field of the Earth, geometry of the gravity field - Computation of unperturbed satellite orbits - Determination of the Earth gravity field with satellite missions | ||||
Lecture notes | Skript M. Rothacher "Satellitengeodäsie" | ||||
103-0798-00L | Geodetic Project Course ![]() Number of participants limited to 24. | 5 credits | 9P | M. Rothacher, K. Schindler, A. Wieser | |
Abstract | Field course with practical geodetic projects (3 weeks) | ||||
Objective | Field course with practical geodetic projects (3 weeks) | ||||
Content | Single-handed treatment of current geodetic projects in small teams. Writing of a technical report with description of the project, calculations, results and interpretations. Possibility to continue the work in a master's thesis or project. | ||||
Prerequisites / Notice | The course takes place bezween June 14 and July 9, 2021. Within this period, 2 weeks of fieldwork in Graubünden are planned. Additionally there will be preparatory work and post-processing carried out in Zurich. | ||||
103-0838-00L | Geomonitoring and Geosensors | 4 credits | 3G | A. Wieser, M. Rothacher | |
Abstract | This course provides an introduction to sensors, measurement techniques and analysis methods for geodetic monitoring of natural structures of local to regional scale like landslides, rock falls, volcanoes and tsunamis. Several case studies will highlight the application of the presented technologies. | ||||
Objective | Understanding the core challenges and proven approaches to monitoring of local and regional deformation; gaining an overview of established measurement and data processing techniques for monitoring geometric changes. | ||||
Content | Introduction to geomonitoring; sensors and measurement technologies: GNSS, TPS, TLS, GB-SAR, geosensor networks, geotechnical monitoring sensors; areal and point-wise deformation monitoring; congruency tests, network deformation analysis, sensitivity, regression and jump detection; estimation of strain tensor, block analysis; case studies. | ||||
Lecture notes | The lecture slides and further literature will be made available on the course webpage. | ||||
Prerequisites / Notice | Students should be familiar with geodetic networks, parameter estimation, GNSS and Engineering Geodesy. Students who have not taken the related courses of the ETH curriculum (or equivalent courses at another university) but want to take this course should contact the lecturers beforehand. | ||||
103-0850-00L | Physical and Kinematic Geodesy | 6 credits | 4G | M. Rothacher | |
Abstract | Gravity field of the Earth, normal gravity, gravity reductions, reference surfaces and height systems, description of the gravity field by spherical harmonics functions, gravity field measurements, geoid determination, space curves and trajectories, space curves on surfaces, accelerated reference frames and moving measurement platforms, inertial navigation, Kalman filter | ||||
Objective | Erkenntnis, dass ein erdfestes Bezugssystem ein beschleunigtes Bezugssystem darstellt, das alle Messprozesse beeinflusst; Beherrschen der Grundlagen der physikalischen Geodäsie; Fähigkeit, mit ellipsoidischen und physikalischen Höhen umzugehen und diese zu bestimmen; Kenntnis der Methoden der Geoidbestimmung; Wissen über die Effekte, die auf einer bewegten Messplattform zu beachten sind; Grundkenntnisse in der Trägheitsnavigation und in der Kalman-Filterung | ||||
Lecture notes | Lecture notes are available | ||||
103-1184-AAL | Physical and Kinematic Geodesy Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 6 credits | 4R | M. Rothacher | |
Abstract | Modern methods of Higher Geodesy. Basics of Shape of the Earth: Geoid determination and deflection of the vertical. Introduction into the most important topics: Satellite Geodesy and Navigation; Physical Geodesy and gravity field of the Earth; Astronomical Geodesy and Positioning; Mathematical Geodesy and basics of Geodynamics. Reference systems and applications in National and Global Geomatics. | ||||
Objective | Overview over the entire spectrum of Physical and Kinematic Geodesy |