Roger Gassert: Katalogdaten im Herbstsemester 2016 |
Name | Herr Prof. Dr. Roger Gassert |
Lehrgebiet | Rehabilitationstechnik |
Adresse | Rehabilitation Engineering ETH Zürich, GLC G 20.2 Gloriastrasse 37/ 39 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 32 66 |
roger.gassert@hest.ethz.ch | |
URL | http://www.relab.ethz.ch/laboratory/team/roger-gassert.html |
Departement | Gesundheitswissenschaften und Technologie |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
151-0061-10L | Ingenieur-Tool lV/V: Wissenschaftliches Arbeiten mit LaTeX und Vektorgraphiken Die Ingenieur-Tool-Kurse sind ausschliesslich für MAVT-Bachelor-Studierende. Maximale Teilnehmerzahl: 40 Es darf nur ein Ingenieur-Tool-Kurs pro Semester belegt werden. | 0.4 KP | 1K | R. Gassert | |
Kurzbeschreibung | Dieser Kurs gibt einen Einblick in Aufbau und Erstellen von wissenschaftlichen Arbeiten und Publikationen mit Hilfe von LaTeX und Open Source Programmen zur Bildbearbeitung und Erstellung von Vektorgraphiken. LaTeX ist ein Textsatzprogramm, welches Formatierungen und Layout trennt und vor allem im wissenschaftlichen Bereich bei umfangreichen Arbeiten und Publikationen zum Einsatz kommt. | ||||
Lernziel | Anhand konkreter Beispiele einen Einblick in das Verfassen wissenschaftlicher Arbeiten (z.B. Bachelor Arbeit, Semester Arbeit, Master Arbeit) mit LaTeX und Vektorgraphiken erhalten und die wichtigsten Befehle zum Setzen komplexer Formeln, Tabellen und Graphiken erlernen. | ||||
Inhalt | -- Aufbau einer wissenschaftlichen Arbeit -- Schreiben mit LaTeX (Strukturaufbau, Formatierung, Formeln, Tabellen, Grafiken, Literaturverweise, Inhaltsverzeichnis, Hyperlinks, Packages) basierend auf einem Template für Bachelor/ Semester/ Master Arbeiten -- Grafische Gestaltung und Darstellung mit Matlab und Open Source Programmen -- Einbinden von PDF Dateien (Aufgabenstellung, Datenblätter) -- Verwalten von Literaturdatenbanken | ||||
Literatur | http://www.relab.ethz.ch/education/courses/engineering-tools-latex.html | ||||
Voraussetzungen / Besonderes | Besonderes: Die Übungen werden auf dem eigenen Laptop durchgeführt (mindestens ein Laptop pro zwei Personen). Ein komplettes LaTeX Package und Inkscape müssen im Voraus installiert werden | ||||
151-0623-00L | ETH Zurich Distinguished Seminar in Robotics, Systems and Controls Students for other Master's programmes in Department Mechanical and Process Engineering cannot use the credit in the category Core Courses | 1 KP | 1S | B. Nelson, J. Buchli, M. Chli, R. Gassert, M. Hutter, W. Karlen, R. Riener, R. Siegwart | |
Kurzbeschreibung | This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. | ||||
Lernziel | Obtain an overview of various topics in Robotics, Systems, and Controls from leaders in the field. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a list of upcoming lectures. | ||||
Inhalt | This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. MSc students in Robotics, Systems, and Controls are required to attend every lecture. Attendance will be monitored. If for some reason a student cannot attend one of the lectures, the student must select another ETH or University of Zurich seminar related to the field and submit a one page description of the seminar topic. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a suggestion of other lectures. | ||||
Voraussetzungen / Besonderes | Students are required to attend all seven lectures to obtain credit. If a student must miss a lecture then attendance at a related special lecture will be accepted that is reported in a one page summary of the attended lecture. No exceptions to this rule are allowed. | ||||
376-1219-00L | Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions | 3 KP | 2V | R. Riener, R. Gassert, L. Marchal Crespo | |
Kurzbeschreibung | Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system. | ||||
Lernziel | Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution. This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order. | ||||
Inhalt | Introduction, problem definition, overview Rehabilitation of visual function - Anatomy and physiology of the visual sense - Technical aids (glasses, sensor substitution) - Retina and cortex implants Rehabilitation of hearing function - Anatomy and physiology of the auditory sense - Hearing aids - Cochlea Implants Rehabilitation and use of kinesthetic and tactile function - Anatomy and physiology of the kinesthetic and tactile sense - Tactile/haptic displays for motion therapy (incl. electrical stimulation) - Role of displays in motor learning Rehabilitation of vestibular function - Anatomy and physiology of the vestibular sense - Rehabilitation strategies and devices (e.g. BrainPort) Rehabilitation of vegetative Functions - Cardiac Pacemaker - Phrenic stimulation, artificial breathing aids - Bladder stimulation, artificial sphincter Brain stimulation and recording - Deep brain stimulation for patients with Parkinson, epilepsy, depression - Brain-Computer Interfaces | ||||
Literatur | Introductory Books: An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007. Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000. Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS). Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008. The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Selected Journal Articles and Web Links: Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752 Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at: http://www.cim.mcgill.ca/~vleves/docs/VL-CIM-TR-05.08.pdf Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. The vOICe. http://www.seeingwithsound.com. VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html | ||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order. | ||||
376-1504-00L | Physical Human Robot Interaction (pHRI) Number of participants limited to 26. | 4 KP | 2V + 2U | R. Gassert, O. Lambercy | |
Kurzbeschreibung | This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems. | ||||
Lernziel | The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems. By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to: 1) identify critical human factors in physical human-robot interaction and use these to derive design requirements; 2) compare and select mechatronic components that optimally fulfill the defined design requirements; 3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system; 4) design control hardware and software and implement and test human-interactive control strategies on the physical setup; 5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics; 6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation. | ||||
Inhalt | This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits. Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (http://www.relab.ethz.ch/education/courses/phri/request-ethz-haptic-paddle-hardware-documentation.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties. | ||||
Skript | Will be distributed through the document repository before the lectures. http://www.relab.ethz.ch/education/courses/phri.html | ||||
Literatur | Abbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964. Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 -474. Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human ndash;robot interaction. Robotics, IEEE Transactions on, 23(2):232 -244. Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY. Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol.4. Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 -268. Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397-406. Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 -10. Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 7, pages 195-206. Citeseer. Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 -104. Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25. MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 -119. Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728 vol.3. Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262. Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-, 91(3):345-350. O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 -454. Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2. Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24-32. Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 -175. Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162. | ||||
Voraussetzungen / Besonderes | Notice: The registration is limited to 26 students There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to have basic control knowledge from previous classes. http://www.relab.ethz.ch/education/courses/phri.html |