Martin Schmid: Katalogdaten im Frühjahrssemester 2019 |
Name | Herr Dr. Martin Schmid |
Adresse | EAWAG Seestrasse 79 6047 Kastanienbaum SWITZERLAND |
Telefon | 058 765 21 93 |
martin.schmid@usys.ethz.ch | |
Departement | Umweltsystemwissenschaften |
Beziehung | Dozent |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
701-1338-00L | Biogeochemical Modelling of Sediments, Lakes and Oceans ![]() Number of participants limited to 18. The waiting list will be deleted on March 1st, 2019. | 3 KP | 2G | M. Schmid, D. Bouffard, M. Vogt | |
Kurzbeschreibung | In this course, the students acquire skills to implement and test basic numerical models for the simulation of biogeochemistry in aquatic systems using Matlab, to interpret and document model results, and to discuss model limitations. The focus of the course is on practical applications. | ||||
Lernziel | The aim of this course is to encourage and enable students to develop, test and apply basic numerical models for a range of biogeochemical applications, and to interpret model results. | ||||
Inhalt | Numerical models are useful tools for evaluating processes in complex systems, interpreting observational data, and projecting the response of a system beyond the range of observations. In this course, the students acquire skills to implement and test basic numerical models for the simulation of biogeochemical processes in aquatic systems using Matlab, to interpret and document model results, and to discuss model limitations. The course includes the following topics: - Formulation of transport and reaction equations describing aquatic systems - Numerical recipes (discretization in time and space, finite differences, finite volumes, initial and boundary conditions) - Implementation of simple models in Matlab (box models, 1D-models, with applications from sediments, lakes, and oceans) - Techniques for applied modelling & model testing (sensitivity analysis, parameter estimation) - Interpretation and documentation of model results - Model applications in current aquatic research (examples from scientific literature) | ||||
Skript | Presentation slides, exercises, and some background material will be provided. | ||||
Literatur | E Holzbecher, 2012, Environmental Modeling Using MATLAB, 2nd edition, Springer DM Glover, WJ Jenkins, SC Doney, 2011. Modeling Methods for Marine Science, Cambridge University Press K Soetaert, PMJ Herman, 2009. A Practical Guide to Ecological Modelling, Springer | ||||
Voraussetzungen / Besonderes | The students are expected to work with their own Laptop where Matlab should be installed prior to the start of the class (available for free from Stud-IDES). The following course or equivalent knowledge is required: Mathematik III: Systemanalyse (701-0071-00L, autumn semester, German) Basic programming knowledge in Matlab is required, e.g. the following course: Anwendungsnahes Programmieren mit MATLAB (252-0840-01L, spring semester until 2017, German) The following course is useful but not required: Modelling Aquatic Ecosystems (701-0426-00L, spring semester, English) The number of participants is limited to 18. Selection of the students: order of registration. |