Gunnar Jeschke: Katalogdaten im Frühjahrssemester 2023 |
Name | Herr Prof. Dr. Gunnar Jeschke |
Lehrgebiet | Elektronenspinresonanz |
Adresse | Inst. Mol. Phys. Wiss. ETH Zürich, HCI F 227 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telefon | +41 44 632 57 02 |
gunnar.jeschke@phys.chem.ethz.ch | |
Departement | Chemie und Angewandte Biowissenschaften |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0432-AAL | Physical Chemistry IV: Magnetic Resonance Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 4 KP | 9R | G. Jeschke, M. Ernst | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Theoretical foundations of magnetic resonance (NMR,EPR) and selected applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction to magnetic resonance in isotropic and anisotropic phase. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | handed out in the lecture (in english) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | see http://www.ssnmr.ethz.ch/education/PC_IV_Lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0499-00L | Physical Chemistry | 0 KP | 1K | G. Jeschke, A. Barnes, M. Ernst, P. H. Hünenberger, F. Merkt, M. Reiher, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Seminar series covering current developments in Physical Chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Discussing current developments in Physical Chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-1025-00L | Physikalische Chemie (für Pharm.Wiss.) | 3 KP | 2V + 1U | G. Jeschke, M. Yulikov | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Thermodynamische Grundlagen von Phasengleichgewichten, intermolekularen Wechselwirkungen und molekularer Selbstassoziation und Kinetik von chemischen Reaktionen und Transportprozessen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Der Kurs vermittelt die physikalisch-chemischen Grundlagen wichtiger Prozesse in Zellen und Organismen sowie in der Galenik. Die Studierenden lernen 1. Die Beurteilung von Gleichgewichten anhand des chemischen Potentials 2. Die Interpretation von Phasendiagrammen 3. Welche Wechselwirkungen zwischen Molekülen in lebend Zellen wichtig sind 4. Warum es zur Selbstorganisation von Molekülen zu Aggregaten kommt 5. Welche physikalisch-chemischen Grundlagen das Verhalten von Biomembranen bestimmen 6. Wodurch die Geschwindigkeit chemischer Reaktionen, insbesondere auch enzymatisch katalysierter Reaktionen bestimmt wird 7. Wodurch die Geschwindigkeit von Stoff- und Wärmetransport bestimmt wird | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Chemisches Potential, Vorhersage der Richtung von Prozessen, Phasengleichgewicht, Phasenregel, Phasendiagramme reiner Stoffe, kolligative Eigenschaften, Osmose, Dialyse, Grenzflächenspannung, intermolekulare Wechselwirkungen, hydrophober Effekt, Hydrophilie und Denaturierung, Amphiphile, Grundlagen der Selbstassoziation, Mizellen, Packungsparameter, Doppelschichten, Vesikel, Membranen, Elementarreaktionen, Parallelreaktionen, Folgereaktionen, Eyring-Theorie, Enzymkinetik, Diffusion, Wärmeleitung, aktiver Transport | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Ein elektronisches Skript ist im Moodle und auf epr.ethz.ch/education.html verfügbar. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Zusätzlich zum Skript kann der Stoff am Besten mit zwei englischsprachigen Lehrbüchern vertieft werden: Marc R. Roussel, A Life Scientist's Guide to Physical Chemistry, Cambridge University Press, 2012 Jacob Israelachvili, Intermoleculr and Surface Forces, Academic Press, 1992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik II für Bio/Pharm. Wiss. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1414-00L | Molecular and Structural Biology V: Studying Macromolecules by NMR and EPR | 4 KP | 2V | F. Allain, A. D. Gossert, G. Jeschke, K. Wüthrich | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides an overview of experimental methods for studying function and structure of macromolecules at atomic resolution in solution. The two main methods used are Nuclear Magnetic Resonance (NMR) spectroscopy and Electron Paramagnetic Resonance (EPR) spectroscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Insight into the methodology, areas of application and limitations of these two methods for studying biological macromolecules. Practical exercises with spectra to have hands on understanding of the methodology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Part I: Historical overview of structural biology. Part II: Basic concepts of NMR and initial examples of applications. 2D NMR and isotope labeling for studying protein function and molecular interactions at atomic level. Studies of dynamic processes of proteins in solution. Approaches to study large particles. Methods for determination of protein structures in solution. Part III: NMR methods for structurally characterizing RNA and protein-RNA complexes. Part IV: EPR of biomolecules | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1) Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley-Interscience. 2) Dominguez et al, Prog Nucl Magn Reson Spectrosc. 2011 Feb;58(1-2):1-61. 3) Duss O et al, Methods Enzymol. 2015;558:279-331. |